NOVEMBER, 14th 2024
Algorithms Session | Sensors Session

 

09:20 → 09:30

Introduction

Antoine Michel, EDF

09:30 → 10:30

Quantum algorithms in the NISQ era

09:30 → 10:00

Probing many-body quantum states in large-scale experiments with an upgraded randomized measurements toolbox
Benoit Vermersch, QUOBLY

10:00 → 10:30

Materials science and chemistry with quantum algorithms: from the textbook to the processor
Thomas Ayral, EVIDEN

10:30 → 11:00

COFFEE BREAK

30

11:00 → 14:40

Towards industrial applications of quantum algorithms

11:00 → 11:30

Designing quantum algorithms for the electronic structure of strongly correlated systems
Matthieu Saubanère, CNRS Research Fellow, Bordeaux (LOMA)

11:30 → 12:00

Quantum computing for optimization problems
Philippe Lacomme, associate professor at the University of Clermont Auvergne (LIMOS)

12:00 → 12:20

Sampling rare events on quantum computers
Michel NOWAK, Thales Research & Technology

12:20 → 12:40

Quantum Algorithms for Distributed Quantum Computing
Ioannis Lavdas, Welinq

12:40 → 14:00

LUNCH

14:00 → 14:20

Quantum Algorithms for Fracture Mechanics
Ulysse Rémond, EDF

14:20 → 14:40

Quantum Computing for Partition Function Estimation of a Markov Random Field in a Radar Anomaly Detection Problem
Timothé PRESLES, Thales Defense Mission Systems

14:40 → 15:40

Mitigation of noise : quantum error correction

14:40 → 15:10

From cat qubit to large scale fault-tolerant quantum computer: Alice & Bob’s approach
Élie Gouzien, Alice & Bob

15:10 → 15:40

Algorithmic Fault Tolerance for Fast Quantum Computing
Chen Zhao, Quera

15:40 → 16:10

COFFEE BREAK

30

16:10 → 17:40

Quantum Machine Learning

16:10 → 16:30

Unsupervised Feature Selection Using Gaussian Boson Sampling
Jesua Epequin, EDF China R&D

16:30 → 16:50

Subspace Preserving Quantum Machine Learning Algorithms
Léo Monbroussou, Naval group/LIP6

16:50 → 17:10

Reservoir quantum computing
Naomi Chmielewski, EDF

17:10 → 17:40

Understanding the role of data and learning through a quantum lens
Jarrod MCClean, Google