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The textbook:

On the one hand:

A complex quantum system
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= 𝐻(𝑡)|Ψ⟩
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𝑑|Ψ⟩

𝑑𝑡
= 𝐻(𝑡)|Ψ⟩

On the other hand:

A complex… artificial… quantum system

𝑖ℏ
𝑑|෩Ψ⟩

𝑑𝑡
= ෩𝐻(𝑡)|෩Ψ⟩

If ෩𝑯 ≈ 𝑯, we learn something about |𝚿⟩ by measuring | ෩𝚿⟩!

Exponential advantage for quantum dynamics (Lloyd ‘96)
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Materials science and chemistry: low-energy states

Ground state search: 

𝐻 Ψ = 𝐸 Ψ
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Materials science and chemistry: low-energy states

Ground state search: 

𝐻 Ψ = 𝐸 Ψ

Quantum phase estimation (QPE) algorithm
(Kitaev 95)

H

𝑈 𝑈2 𝑈2𝑛−1

H
H

𝐹𝑜𝑢𝑟𝑖𝑒𝑟

|Ψguess⟩

|0⟩

|0⟩

|0⟩

with 𝑈 = 𝑒−𝑖𝐻𝑡/ℏ

Too long!

≈ 𝐸
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Materials science and chemistry: low-energy states

Ground state search: 

𝐻 Ψ = 𝐸 Ψ

Quantum phase estimation (QPE) algorithm
(Kitaev 95)

with 𝑈 = 𝑒−𝑖𝐻𝑡/ℏ

Too long!

≈ 𝐸

Large Scale Quantum: Tomorrow

Quantum error corrected computers
A lot (millions) of high-quality qubits

Most advanced experiments (Rydberg, 
ions, superconducting qubits):

Only 10-100 physical qubits,
just below threshold

Noisy Intermediate Scale Quantum: Today

• Small number of qubits (10-1000 today)
• High error rates (100-1000 gates)

𝐹 = 𝑒−𝑝𝑁𝑔

Error
per gate

Number
of gates

Exponential
decay of fidelity:
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Too long… also without noise?

Ground state search: 

𝐻 Ψ = 𝐸 Ψ

Quantum phase estimation (QPE) algorithm
(Kitaev 95)

Too long!

H

𝑈 𝑈2 𝑈2𝑛−1

H
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|0⟩
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Key point: role of overlap

Ω = Ψguess Ψ0
2

Need 𝑶(𝟏
𝛀
) repetitions of QPE!

Louvet, TA, Waintal, 2306.02620
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Too long… also without noise?

Ground state search: 

𝐻 Ψ = 𝐸 Ψ

Quantum phase estimation (QPE) algorithm
(Kitaev 95)

Too long!

H

𝑈 𝑈2 𝑈2𝑛−1

H
H

𝐹𝑜𝑢𝑟𝑖𝑒𝑟

|Ψguess⟩

|0⟩

|0⟩

|0⟩

Key point: role of overlap

Ω = Ψguess Ψ0
2

Need 𝑶(𝟏
𝛀
) repetitions of QPE!

We found a formula to assess Ω given the energy + 
variance of Ψguess (+ estimate of 𝐸0).

Applied it to advanced classical methods.

Outcome:
𝛀 decreases exponentially with molecule size!

Louvet, TA, Waintal, 2306.02620



What can one do with today’s processors?
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The bread-and-butter NISQ algorithm: the variational quantum eigensolver
(Peruzzo et al 2014)

𝜃1

𝜃2

𝜃3
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The bread-and-butter NISQ algorithm: the variational quantum eigensolver
(Peruzzo et al 2014)

Idea: try to minimize use of quantum resources

Parametric circuit 𝑼𝜽:

𝜃1

𝜃2

𝜃3



15© Eviden SAS

Parametric circuit 𝑼𝜽:

𝜃1

𝜃2

𝜃3

Known issues with the variational quantum eigensolver

Interesting variational
circuits are still too long!
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Electronic structure Hamiltonian:

𝐻 =

𝑝𝑞

ℎ𝑝𝑞𝑐𝑝
† 𝑐𝑞 +

1

2


𝑝𝑞𝑟𝑠

ℎ𝑝𝑞𝑟𝑠𝑐𝑝
†𝑐𝑞

† 𝑐𝑟𝑐𝑠

Fermion antisymmetry:

𝒄𝟒
+ 𝟎𝟎𝟏𝟎 = − 𝟎𝟎𝟏𝟏

vs. qubits:

𝝈𝟒
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Outline

21

Can we shorten circuits?

Can we even avoid fermionic rules?

Hybridizing tensor networks and quantum algorithms

Could we use quantum noise to our advantage?
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Can we shorten circuits?

Can we even avoid fermionic rules?

Hybridizing tensor networks and quantum algorithms

Could we use quantum noise to our advantage?
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The importance of the orbital basis

Consider

𝐻 =

𝑝𝑞

ℎ𝑝𝑞𝑐𝑝
† 𝑐𝑞 +

1

2


𝑝𝑞𝑟𝑠

ℎ𝑝𝑞𝑟𝑠𝑐𝑝
†𝑐𝑞

† 𝑐𝑟𝑐𝑠

Hartree-Fock method: define

ǁ𝑐𝑖
† =

𝑝

𝑉𝑖𝑝𝑐𝑝
†

Find orbital transformation 𝑉 s.t HF wavefunction

Ψ 𝑉 = ǁ𝑐𝑖1
† ⋯ ǁ𝑐𝑖𝑁𝑒

† 00…0

minimizes ⟨Ψ(𝑉)|𝐻 Ψ 𝑉



24© Eviden SAS

The importance of the orbital basis

Consider

𝐻 =

𝑝𝑞

ℎ𝑝𝑞𝑐𝑝
† 𝑐𝑞 +

1

2


𝑝𝑞𝑟𝑠

ℎ𝑝𝑞𝑟𝑠𝑐𝑝
†𝑐𝑞

† 𝑐𝑟𝑐𝑠

Hartree-Fock method: define

ǁ𝑐𝑖
† =

𝑝

𝑉𝑖𝑝𝑐𝑝
†

Find orbital transformation 𝑉 s.t HF wavefunction

Ψ 𝑉 = ǁ𝑐𝑖1
† ⋯ ǁ𝑐𝑖𝑁𝑒

† 00…0

minimizes ⟨Ψ(𝑉)|𝐻 Ψ 𝑉

Quantum computer representation?

In ǁ𝑐𝑖
† (molecular orbital) basis: Ψ 𝑉 = ǁ𝑐𝑖1

† ⋯ ǁ𝑐𝑖𝑁𝑒
† 00…0

X
X
X𝑖1

𝑖2

𝑖3

|1⟩

|1⟩
|1⟩
|0⟩

|0⟩

ǁ𝑐𝑖
†
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minimizes ⟨Ψ(𝑉)|𝐻 Ψ 𝑉

Quantum computer representation?

In ǁ𝑐𝑖
† (molecular orbital) basis: Ψ 𝑉 = ǁ𝑐𝑖1

† ⋯ ǁ𝑐𝑖𝑁𝑒
† 00…0

In e.g original basis… Ψ 𝑉 much more complicated!

𝑮𝟏

X
X
X𝑖1

𝑖2

𝑖3

|1⟩

|1⟩
|1⟩
|0⟩

|0⟩

X
X
X

𝑮𝟐

𝑮𝟑

𝑮𝟒
𝑮𝟔

𝑮𝟓

Givens rotations ~𝑒ℎ𝑐
†𝑐… aka Gaussian gates

ǁ𝑐𝑖
†

𝑐𝑝
† Cf Arute et 

al 2021
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Beyond Hartree-Fock?

In original basis:

Can we find a (the?) basis that most simplifies the 
circuit?

𝑨𝟏
X
X
X

𝑮𝟐

𝑮𝟑

𝑨𝟐
𝑨𝟑

𝑮𝟓

෩𝑨𝟏
X
X
X

෩𝑨𝟐
෩𝑨𝟑

𝑐𝑝
†

ǁ𝑐𝑖
†

non Gaussian gates
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Beyond Hartree-Fock?

In original basis:

Can we find a (the?) basis that most simplifies the 
circuit?

The natural orbital basis

The basis with fewest Slater determinants,
hence shortest circuit!

How to compute it ?

Diagonalize

𝐷𝑝𝑞 = Ψ 𝑐𝑝
†𝑐𝑞 Ψ = 𝑉𝑝𝑖𝑛𝑖𝑉𝑖𝑞

†

𝑨𝟏
X
X
X

𝑮𝟐

𝑮𝟑

𝑨𝟐
𝑨𝟑

𝑮𝟓

෩𝑨𝟏
X
X
X

෩𝑨𝟐
෩𝑨𝟑

𝑐𝑝
†

ǁ𝑐𝑖
†

non Gaussian gates
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Iterative rotation to the natural orbital basis

|Ψ⟩ is unknown! Determine RDM iteratively

CPU

QPU

Parameters 
Ԧ𝜃

Energy
𝐸 Ԧ𝜃

= ⟨𝜓
𝜃
𝐻 𝑉 𝜓

𝜃
⟩

Adaptive VQE

Besserve, TA, PRB ‘22
Besserve, Ferrero, TA, 2406.14170

See also: Koridon et al 2021 for orbital optimization

(Grimsley 2019)
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Iterative rotation to the natural orbital basis

|Ψ⟩ is unknown! Determine RDM iteratively

CPU

QPU

CPU
Diagonalization

𝐷 = 𝑉𝑛𝑉†
Natural 
orbital basis 𝑉

Parameters 
Ԧ𝜃

Energy
𝐸 Ԧ𝜃

= ⟨𝜓
𝜃
𝐻 𝑉 𝜓

𝜃
⟩

1-RDM
𝐷𝑖𝑗 Ԧ𝜃

= ⟨𝜓
𝜃∗
𝑐𝑖
†𝑐𝑗 𝜓𝜃∗

⟩

Adaptive VQE

Besserve, TA, PRB ‘22
Besserve, Ferrero, TA, 2406.14170

See also: Koridon et al 2021 for orbital optimization

(Grimsley 2019)
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Iterative rotation to the natural orbital basis

|Ψ⟩ is unknown! Determine RDM iteratively Application:
Hubbard model
(here N=2 sites):

Simplest model for high-temperature
superconductors
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QPU

CPU
Diagonalization
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Natural 
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See also: Koridon et al 2021 for orbital optimization
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Iterative rotation to the natural orbital basis

|Ψ⟩ is unknown! Determine RDM iteratively Application:
Hubbard model
(here N=2 sites):

CPU

QPU

CPU
Diagonalization

𝐷 = 𝑉𝑛𝑉†
Natural 
orbital basis 𝑉

Parameters 
Ԧ𝜃

Energy
𝐸 Ԧ𝜃

= ⟨𝜓
𝜃
𝐻 𝑉 𝜓

𝜃
⟩

1-RDM
𝐷𝑖𝑗 Ԧ𝜃

= ⟨𝜓
𝜃∗
𝑐𝑖
†𝑐𝑗 𝜓𝜃∗

⟩

Adaptive VQE

Besserve, TA, PRB ‘22
Besserve, Ferrero, TA, 2406.14170

Large number of gates

Quite poor estimate

Accurate estimate

Small number of gates

Number of operators

Energy

Noiseless,
no interaction

See also: Koridon et al 2021 for orbital optimization

(Grimsley 2019)
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Conclusions of Part 1

One method to reduce sensitivity to decoherence.

Still many issues with VQE (even without noise!)
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One method to reduce sensitivity to decoherence.

Still many issues with VQE (even without noise!)

• Measurement problem: 𝝍𝜽 𝑯 𝝍𝜽 known only up 
to statistical error

Δ𝐸 ≈
𝐻 1

𝑁samples

Conclusions of Part 1
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Δ𝐸 ≈
𝐻 1

𝑁samples

mHa
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=> Lots of samples (days/months)

Conclusions of Part 1

(Wecker 2017)
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Conclusions of Part 1

One method to reduce sensitivity to decoherence.

Still many issues with VQE (even without noise!)

• Measurement problem: 𝝍𝜽 𝑯 𝝍𝜽 known only up 
to statistical error

Δ𝐸 ≈
𝐻 1

𝑁samples

mHa
Ha

=> Lots of samples (days/months)

𝑬(𝜽)

𝜽

𝜎 𝐸 ∼
1

2𝑛

• Barren plateau problem (McClean 2018)

Ways out?
• Clever initialization
• Change way of optimizing
• (etc)

(Wecker 2017)
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Chemistry: Unitary Coupled Cluster ansatz 𝑈 Ԧ𝜃 |HF⟩

VQE: minimize ⟨𝐻𝐹|𝑈† Ԧ𝜃 𝐻𝑈 Ԧ𝜃 |HF⟩

PQE: find zeros of ‘residues’:

𝑟𝜇 Ԧ𝜃 = ⟨EXμ|𝑈
† Ԧ𝜃 𝐻𝑈 Ԧ𝜃 |HF⟩

with EXμ = 𝑐𝑎
†𝑐𝑖 𝐻𝐹 , 𝑐𝑎

†𝑐𝑏
†𝑐𝑖𝑐𝑗 𝐻𝐹 , etc

Plazanet, TA, 2410.15129

Stair et al ‘22

Find zeroes instead of minimizing:
the projective quantum eigensolver (PQE)
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CC equations
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the projective quantum eigensolver (PQE)
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Find zeroes instead of minimizing:
the projective quantum eigensolver (PQE)

Chemistry: Unitary Coupled Cluster ansatz 𝑈 Ԧ𝜃 |HF⟩

VQE: minimize ⟨𝐻𝐹|𝑈† Ԧ𝜃 𝐻𝑈 Ԧ𝜃 |HF⟩

PQE: find zeros of ‘residues’:

𝑟𝜇 Ԧ𝜃 = ⟨EXμ|𝑈
† Ԧ𝜃 𝐻𝑈 Ԧ𝜃 |HF⟩

with EXμ = 𝑐𝑎
†𝑐𝑖 𝐻𝐹 , 𝑐𝑎

†𝑐𝑏
†𝑐𝑖𝑐𝑗 𝐻𝐹 , etc

Root finding: Newton-Raphson algorithm

• Convergence guarantees! (Newton-Kantorovitch 
theorem)

• Residues -> upper bound energy error (Temple 
inequality)

Plazanet, TA, 2410.15129

Stair et al ‘22

Very similar
to projective 
CC equations
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PQE: find zeros of ‘residues’:

𝑟𝜇 Ԧ𝜃 = ⟨EXμ|𝑈
† Ԧ𝜃 𝐻𝑈 Ԧ𝜃 |HF⟩

with EXμ = 𝑐𝑎
†𝑐𝑖 𝐻𝐹 , 𝑐𝑎

†𝑐𝑏
†𝑐𝑖𝑐𝑗 𝐻𝐹 , etc

Root finding: Newton-Raphson algorithm

• Convergence guarantees! (Newton-Kantorovitch 
theorem)

• Residues -> upper bound energy error (Temple 
inequality)

New hybrid update 
rule (GD+Newton)

➔Better convergence 
than standard PQE

➔Similar to VQE (but
with error
estimation)

Plazanet, TA, 2410.15129

Stair et al ‘22

Very similar
to projective 
CC equations

Find zeroes instead of minimizing:
the projective quantum eigensolver (PQE)
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Chemistry: Unitary Coupled Cluster ansatz 𝑈 Ԧ𝜃 |HF⟩

VQE: minimize ⟨𝐻𝐹|𝑈† Ԧ𝜃 𝐻𝑈 Ԧ𝜃 |HF⟩

PQE: find zeros of ‘residues’:

𝑟𝜇 Ԧ𝜃 = ⟨EXμ|𝑈
† Ԧ𝜃 𝐻𝑈 Ԧ𝜃 |HF⟩

with EXμ = 𝑐𝑎
†𝑐𝑖 𝐻𝐹 , 𝑐𝑎

†𝑐𝑏
†𝑐𝑖𝑐𝑗 𝐻𝐹 , etc

Root finding: Newton-Raphson algorithm

• Convergence guarantees! (Newton-Kantorovitch 
theorem)

• Residues -> upper bound energy error (Temple 
inequality)

New hybrid update 
rule (GD+Newton)

➔Better convergence 
than standard PQE

➔Similar to VQE (but
with error
estimation)

➔Much fewer
measurements
than VQE.

➔Can it help mitigate
barren plateau
issue?

Plazanet, TA, 2410.15129

Stair et al ‘22

(14 perfect qubits)

Very similar
to projective 
CC equations

Find zeroes instead of minimizing:
the projective quantum eigensolver (PQE)
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Outline
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Can we shorten circuits?

Can we even avoid fermionic rules?
Hubbard physics with Rydberg processors

Hybridizing tensor networks and quantum algorithms

Could we use quantum noise to our advantage?
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Mott physics in the Hubbard model

2D Hubbard model

Typical evolution of the spectral function:

Fermi 
liquid

Mott
insulator

More 
interactions

Quasiparticle
weight Z

𝑼
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Mott physics in the Hubbard model

2D Hubbard model

Typical evolution of the spectral function:

Mott
transitionFermi 

liquid

Mott
insulator

More 
interactions

Quasiparticle
weight Z

𝑼

Equilibrium properties:
Mott transition

DMFT
Georges et al ‘96

Quasiparticle
weight Z
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Mott physics on spin-based quantum processors

Goal: avoid overhead of fermion-to-qubit translation

𝐻 = −𝑡 

⟨𝑖𝑗⟩𝜎

𝑐𝑖𝜎
† 𝑐𝑗𝜎 + 𝑈

𝑖

𝑛𝑖↑𝑛𝑖↓

“Slave-spin theory”: decompose

𝑐𝑖𝜎
† = 𝑍𝑖𝑓𝑖𝜎

†

Michel, Henriet, Domain, Browaeys, TA,
PRB 24

de’ Medici 2005
Rüegg et al 2010
Hassan 2010

spin pseudo-
fermion
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Mott physics on spin-based quantum processors

Goal: avoid overhead of fermion-to-qubit translation

𝐻 = −𝑡 

⟨𝑖𝑗⟩𝜎

𝑐𝑖𝜎
† 𝑐𝑗𝜎 + 𝑈

𝑖

𝑛𝑖↑𝑛𝑖↓

“Slave-spin theory”: decompose

𝑐𝑖𝜎
† = 𝑍𝑖𝑓𝑖𝜎

†

Larger Hilbert space: only a smaller subspace is physical:

Michel, Henriet, Domain, Browaeys, TA,
PRB 24

de’ Medici 2005
Rüegg et al 2010
Hassan 2010
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Mott physics on spin-based quantum processors

Goal: avoid overhead of fermion-to-qubit translation

𝐻 = −𝑡 

⟨𝑖𝑗⟩𝜎

𝑐𝑖𝜎
† 𝑐𝑗𝜎 + 𝑈

𝑖

𝑛𝑖↑𝑛𝑖↓

“Slave-spin theory”: decompose

𝑐𝑖𝜎
† = 𝑍𝑖𝑓𝑖𝜎

†

Larger Hilbert space: only a smaller subspace is physical:

Approximation: Mean-field decoupling:

𝑍𝑖𝑍𝑗𝑓𝑖𝜎
†𝑓𝑗𝜎 ≈ ⟨𝑍𝑖𝑍𝑗⟩𝑓𝑖𝜎

†𝑓𝑗𝜎 + 𝑍𝑖𝑍𝑗⟨𝑓𝑖𝜎
†𝑓𝑗𝜎⟩ + 𝑐𝑜𝑛𝑠𝑡.

Michel, Henriet, Domain, Browaeys, TA,
PRB 24

de’ Medici 2005
Rüegg et al 2010
Hassan 2010
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Mott physics on spin-based quantum processors

Goal: avoid overhead of fermion-to-qubit translation

𝐻 = −𝑡 

⟨𝑖𝑗⟩𝜎

𝑐𝑖𝜎
† 𝑐𝑗𝜎 + 𝑈

𝑖

𝑛𝑖↑𝑛𝑖↓

“Slave-spin theory”: decompose

𝑐𝑖𝜎
† = 𝑍𝑖𝑓𝑖𝜎

†

Larger Hilbert space: only a smaller subspace is physical:

Approximation: Mean-field decoupling:

𝑍𝑖𝑍𝑗𝑓𝑖𝜎
†𝑓𝑗𝜎 ≈ ⟨𝑍𝑖𝑍𝑗⟩𝑓𝑖𝜎

†𝑓𝑗𝜎 + 𝑍𝑖𝑍𝑗⟨𝑓𝑖𝜎
†𝑓𝑗𝜎⟩ + 𝑐𝑜𝑛𝑠𝑡.

Michel, Henriet, Domain, Browaeys, TA,
PRB 24

de’ Medici 2005
Rüegg et al 2010
Hassan 2010

𝑍 𝑍 𝑍 𝑍
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Mott physics on spin-based quantum processors

Goal: avoid overhead of fermion-to-qubit translation

𝐻 = −𝑡 

⟨𝑖𝑗⟩𝜎

𝑐𝑖𝜎
† 𝑐𝑗𝜎 + 𝑈

𝑖

𝑛𝑖↑𝑛𝑖↓

“Slave-spin theory”: decompose

𝑐𝑖𝜎
† = 𝑍𝑖𝑓𝑖𝜎

†

Larger Hilbert space: only a smaller subspace is physical:

Approximation: Mean-field decoupling:

𝑍𝑖𝑍𝑗𝑓𝑖𝜎
†𝑓𝑗𝜎 ≈ ⟨𝑍𝑖𝑍𝑗⟩𝑓𝑖𝜎

†𝑓𝑗𝜎 + 𝑍𝑖𝑍𝑗⟨𝑓𝑖𝜎
†𝑓𝑗𝜎⟩ + 𝑐𝑜𝑛𝑠𝑡.

Michel, Henriet, Domain, Browaeys, TA,
PRB 24

de’ Medici 2005
Rüegg et al 2010
Hassan 2010

𝑍 𝑍 𝑍 𝑍
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Using Rydberg atoms to deal with the spin model

Effective model: Transverse Field Ising model 
(TFIM): 

… very close to Rydberg atom Hamiltonian!

Review: Browaeys & Lahaye 2020

Michel, Henriet, Domain, Browaeys, TA,
PRB 24
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Using Rydberg atoms to deal with the spin model

Effective model: Transverse Field Ising model 
(TFIM): 

… very close to Rydberg atom Hamiltonian!

Main challenges:
• Optimize atoms positions to reproduce 𝐽𝑖𝑗
• Check robustness to decoherence

Review: Browaeys & Lahaye 2020

Michel, Henriet, Domain, Browaeys, TA,
PRB 24
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Using Rydberg atoms to deal with the spin model

Effective model: Transverse Field Ising model 
(TFIM): 

… very close to Rydberg atom Hamiltonian!

Main challenges:
• Optimize atoms positions to reproduce 𝐽𝑖𝑗
• Check robustness to decoherence

Review: Browaeys & Lahaye 2020

Michel, Henriet, Domain, Browaeys, TA,
PRB 24

Rydberg algorithmics:

• Equilibrium: annealing algorithm to prepare ground
state
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Using Rydberg atoms to deal with the spin model

Effective model: Transverse Field Ising model 
(TFIM): 

… very close to Rydberg atom Hamiltonian!

Main challenges:
• Optimize atoms positions to reproduce 𝐽𝑖𝑗
• Check robustness to decoherence

Rydberg algorithmics:

• Equilibrium: annealing algorithm to prepare ground
state

(Can also do dynamics: quench of 𝑈 is a Rabi quench!)

Review: Browaeys & Lahaye 2020

Michel, Henriet, Domain, Browaeys, TA,
PRB 24
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Using Rydberg atoms to deal with the spin model

Effective model: Transverse Field Ising model 
(TFIM): 

… very close to Rydberg atom Hamiltonian!

Main challenges:
• Optimize atoms positions to reproduce 𝐽𝑖𝑗
• Check robustness to decoherence

Rydberg algorithmics:

• Equilibrium: annealing algorithm to prepare ground
state

(Can also do dynamics: quench of 𝑈 is a Rabi quench!)

Ongoing experimental realization @Pasqal!

Review: Browaeys & Lahaye 2020

Michel, Henriet, Domain, Browaeys, TA,
PRB 24
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Can we shorten circuits?

Can we even avoid fermionic rules?
Hubbard physics with Rydberg processors

Hybridizing tensor networks and quantum algorithms
Jump-starting quantum computations

Could we use quantum noise to our advantage?
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Google’s and IBM’s quantum advantage claims

Google supremacy?

classical emulation: 10,000 years

(Arute et al ’19)

Sampling from random circuits

200 seconds! (and 𝐹 = 0.2%!)

Sycamore, 53 qubits
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Google’s and IBM’s quantum advantage claims

Google supremacy?

classical emulation: 10,000 years

(Arute et al ’19)

Morvan et al ‘23

What
happened?

Sampling from random circuits

200 seconds! (and 𝐹 = 0.2%!)

Sycamore, 53 qubits

TA et al, 
PRXQ 2023
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Google’s and IBM’s quantum advantage claims

Google supremacy? IBM useful advantage?

classical emulation: 10,000 years

(Arute et al ’19)

Morvan et al ‘23

What
happened?

Sampling from random circuits

200 seconds! (and 𝐹 = 0.2%!)

Quench on transverse Ising model

(Kim et al ’23)
Sycamore, 53 qubits Eagle, 127 qubits

TA et al, 
PRXQ 2023
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Google’s and IBM’s quantum advantage claims

Google supremacy? IBM useful advantage?

classical emulation: 10,000 years

(Arute et al ’19)

Morvan et al ‘23

What
happened? Classical emulation:

Tindall et al ’23

(also Begusic & Chan ’23, 
Kechedzhi et al ’23, Dalla Torre 
& Roses ‘23 )

Sampling from random circuits

200 seconds! (and 𝐹 = 0.2%!)

Quench on transverse Ising model

(Kim et al ’23)
Sycamore, 53 qubits Eagle, 127 qubits

TA et al, 
PRXQ 2023
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Google’s and IBM’s quantum advantage claims

Google supremacy? IBM useful advantage?

classical emulation: 10,000 years

(Arute et al ’19)

Morvan et al ‘23

What
happened? Classical emulation:

Tindall et al ’23

(also Begusic & Chan ’23, 
Kechedzhi et al ’23, Dalla Torre 
& Roses ‘23 )

Sampling from random circuits

200 seconds! (and 𝐹 = 0.2%!)

Quench on transverse Ising model

(Kim et al ’23)

Method to beat the exponential wall?

Sycamore, 53 qubits Eagle, 127 qubits

TA et al, 
PRXQ 2023
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Basics of tensor networks (matrix product states)

Generic wavefunction:

Representation: 𝜓𝑏1𝑏2𝑏3 =

Ψ = 

𝑏1𝑏2…𝑏𝑛

𝜓𝑏1𝑏2…𝑏𝑛|𝑏1, … , 𝑏𝑛⟩

2𝑛

Storage cost
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Basics of tensor networks (matrix product states)

Generic wavefunction:

Representation:

If no entanglement, 𝜓𝑏1𝑏2…𝑏𝑛 = 𝜓𝑏1𝜙𝑏2𝜑𝑏3

𝜓𝑏1𝑏2𝑏3 =

Ψ = 

𝑏1𝑏2…𝑏𝑛

𝜓𝑏1𝑏2…𝑏𝑛|𝑏1, … , 𝑏𝑛⟩

𝜓𝑏1𝑏2𝑏3 =

2𝑛

2𝑛

Storage cost
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Basics of tensor networks (matrix product states)

Generic wavefunction:

Representation:

If no entanglement, 𝜓𝑏1𝑏2…𝑏𝑛 = 𝜓𝑏1𝜙𝑏2𝜑𝑏3

If some entanglement: 𝜓𝑏1𝑏2𝑏3 = Tr 𝐴𝑏1𝐵𝑏2𝐶𝑏3

𝜓𝑏1𝑏2𝑏3 =

Ψ = 

𝑏1𝑏2…𝑏𝑛

𝜓𝑏1𝑏2…𝑏𝑛|𝑏1, … , 𝑏𝑛⟩

𝜓𝑏1𝑏2𝑏3 =

𝜓𝑏1𝑏2𝑏3 =

2𝑛

2𝑛

2𝑛𝜒2

Bond dimension 𝝌

Storage cost
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Basics of tensor networks (matrix product states)

Generic wavefunction:

Representation:

If no entanglement, 𝜓𝑏1𝑏2…𝑏𝑛 = 𝜓𝑏1𝜙𝑏2𝜑𝑏3

If some entanglement: 𝜓𝑏1𝑏2𝑏3 = Tr 𝐴𝑏1𝐵𝑏2𝐶𝑏3

No free lunch: if entanglement 𝑆, need

𝝌 ≳ 𝟐𝑺

𝜓𝑏1𝑏2𝑏3 =

Ψ = 

𝑏1𝑏2…𝑏𝑛

𝜓𝑏1𝑏2…𝑏𝑛|𝑏1, … , 𝑏𝑛⟩

𝜓𝑏1𝑏2𝑏3 =

𝜓𝑏1𝑏2𝑏3 =

2𝑛

2𝑛

2𝑛𝜒2

Bond dimension 𝝌

Storage cost
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Tensor network (TN) showstopper:

Need 𝝌 ≳ 𝟐𝑺

with 𝑆 : entanglement entropy

1 exponential wall + 1 exponential wall < 2 exponential walls? 
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Tensor network (TN) showstopper:

Need 𝝌 ≳ 𝟐𝑺

with 𝑆 : entanglement entropy

Hard example: quench of Ising model

1 exponential wall + 1 exponential wall < 2 exponential walls? 

Classical cost ∝ 𝒆𝜶𝒕!
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Tensor network (TN) showstopper:

Need 𝝌 ≳ 𝟐𝑺

with 𝑆 : entanglement entropy

Hard example: quench of Ising model

Quantum computation (QC) showstopper:

Fidelity reduction 𝑭 ∝ 𝒆−𝒑𝑵𝐠

Large 𝑁g for accurate Suzuki-Trotter time evolution:

𝑒−𝑖𝐻𝑡 =ෑ
𝑘

𝑁𝑡
ෑ

⟨𝑖𝑗⟩
𝑅𝑧𝑧 𝑖𝑗 ෑ

𝑖
𝑅𝑋(𝑖) + 𝑂 𝑡

𝑁𝑡

2

1 exponential wall + 1 exponential wall < 2 exponential walls? 

Classical cost ∝ 𝒆𝜶𝒕!
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Tensor network (TN) showstopper:

Need 𝝌 ≳ 𝟐𝑺

with 𝑆 : entanglement entropy

Hard example: quench of Ising model

Quantum computation (QC) showstopper:

Fidelity reduction 𝑭 ∝ 𝒆−𝒑𝑵𝐠

Large 𝑁g for accurate Suzuki-Trotter time evolution:

𝑒−𝑖𝐻𝑡 =ෑ
𝑘

𝑁𝑡
ෑ

⟨𝑖𝑗⟩
𝑅𝑧𝑧 𝑖𝑗 ෑ

𝑖
𝑅𝑋(𝑖) + 𝑂 𝑡

𝑁𝑡

2

Two key ideas:

Push TN computation to its limit and take over with
QC

Use TN techniques to compress quantum circuits

1 exponential wall + 1 exponential wall < 2 exponential walls? 

Classical cost ∝ 𝒆𝜶𝒕!
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Anselme-Martin, TA et al, PRA 24 Hybridizing tensor networks and quantum computation

Formal target: fine-grained
Suzuki-Trotter time evolution:

Too many steps for TEBD (limited RAM)
Too many steps for QC (limited coherence)

See also Causer et al ‘23
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Hybridizing tensor networks and quantum computation

Formal target: fine-grained
Suzuki-Trotter time evolution:

Too many steps for TEBD (limited RAM)
Too many steps for QC (limited coherence)

=

(classical) TEBD computation:

QMPS circuit ansatz: maximize
overlap
to find

See also Causer et al ‘23
Anselme-Martin, TA et al, PRA 24
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Hybridizing tensor networks and quantum computation

Formal target: fine-grained
Suzuki-Trotter time evolution:

Too many steps for TEBD (limited RAM)
Too many steps for QC (limited coherence)

= =

(classical) TEBD computation:

QMPS circuit ansatz: maximize
overlap
to find

QMPO circuit ansatz:

(classical) TEBD computation:

maximize
overlap
to find

See also Causer et al ‘23
Anselme-Martin, TA et al, PRA 24 
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Hybridizing tensor networks and quantum computation

Formal target: fine-grained
Suzuki-Trotter time evolution:

Too many steps for TEBD (limited RAM)
Too many steps for QC (limited coherence)

= =

(classical) TEBD computation:

QMPS circuit ansatz: maximize
overlap
to find

QMPO circuit ansatz:

(classical) TEBD computation:

maximize
overlap
to find

Run circuit:

See also Causer et al ‘23
Anselme-Martin, TA et al, PRA 24 
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Hybridizing tensor networks and quantum computation

Formal target: fine-grained
Suzuki-Trotter time evolution:

Too many steps for TEBD (limited RAM)
Too many steps for QC (limited coherence)

= =

(classical) TEBD computation:

QMPS circuit ansatz: maximize
overlap
to find

QMPO circuit ansatz:

(classical) TEBD computation:

maximize
overlap
to find

Run circuit:
What did we gain?

𝑁𝐿
𝑀𝑃𝑆 ≪ 𝑛𝑀𝑃𝑆

𝑁𝐿
𝑀𝑃0 ≪ 𝑛𝑀𝑃0

See also Causer et al ‘23
Anselme-Martin, TA et al, PRA 24 
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Experimental proof of concept on IBM 
quantum computers

Look at magnetization for quenched Ising

• 10 spins/qubits (toy model)

• Assume fixed RAM, hence max bond dim
max time to keep MPS ‘exact’

See also Causer et al ‘23
Anselme-Martin, TA et al, PRA 24 
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Experimental proof of concept on IBM 
quantum computers

Look at magnetization for quenched Ising

• 10 spins/qubits (toy model)

• Assume fixed RAM, hence max bond dim
max time to keep MPS ‘exact’

Quantum 
only (IBM)

Classical
+ 

quantum 
Classical

onlyExact

Time

See also Causer et al ‘23
Anselme-Martin, TA et al, PRA 24 
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Experimental proof of concept on IBM 
quantum computers

Look at magnetization for quenched Ising

• 10 spins/qubits (toy model)

• Assume fixed RAM, hence max bond dim
max time to keep MPS ‘exact’

• Hybrid approach outperforms both others

Only proof of concept!
• Artificially small RAM budget: realistic budget 

would make it hard for QC to compete
• True challenge for TN: 2D (but same ideas

apply)

Quantum 
only (IBM)

Classical
+ 

quantum 
Classical

onlyExact

Time

See also Causer et al ‘23
Anselme-Martin, TA et al, PRA 24 
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Conclusions of Part 3

Double role of tensor networks:

• Often the most advanced classical algorithm: 
a yardstick for quantum advantage

(deflate quantum advantage claims)

• Can jump-start a quantum computation!
(Here, limited to 1D TN… true challenge: 2D)
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Conclusions of Part 3

Double role of tensor networks:

• Often the most advanced classical algorithm:
a yardstick for quantum advantage

(deflate quantum advantage claims)

• Can jump-start a quantum computation!
(Here, limited to 1D TN… true challenge: 2D)

Not mentioned here… a third role:

• Tensor networks are also powerful tools to 
emulate execution of quantum circuits!

• Help interpret results of QCs with 100-1000 noisy
qubits!

Key advantage: decoherence reduces entanglement
𝑆… and recall: 𝝌 ≳ 𝟐𝑺

Noisy QCs are easier for TNs!

Eviden develops QC emulators with 100s qubits!

See Müller, TA, Bertrand, 2403.00152
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Outline

79

Can we shorten circuits?

Can we even avoid fermionic rules?
Hubbard physics with Rydberg processors

Hybridizing tensor networks and quantum algorithms
Jump-starting quantum computations

Could we use quantum noise to our advantage?
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Can we use qubit noise to simulate a thermodynamical bath?

Noisy quantum 

Bertrand, Besserve, Ferrero, TA, in preparation

Slide courtesy of Corentin Bertrand



81© Eviden SAS

Dynamical mean field theory, an ideal playground
From a lattice problem to an atomic problem coupled to a bath

Bertrand, Besserve, Ferrero, TA, in preparation

Slide courtesy of Corentin Bertrand

Georges et al ‘96

e.g Hubbard 
model
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Dynamical mean field theory, an ideal playground
From a lattice problem to an atomic problem coupled to a bath

Bertrand, Besserve, Ferrero, TA, in preparation

Slide courtesy of Corentin Bertrand

Georges et al ‘96

e.g Hubbard 
model
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A workflow to leverage noisy qubits
Bertrand, Besserve, Ferrero, TA, in preparation

Slide courtesy of Corentin Bertrand

with dissipation

Arrigoni ‘13
Dorda ‘14 ‘15 ‘17
Schwarz ‘17

This work This work
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A workflow to leverage noisy qubits
Bertrand, Besserve, Ferrero, TA, in preparation

Slide courtesy of Corentin Bertrand

with dissipation

Arrigoni ‘13
Dorda ‘14 ‘15 ‘17
Schwarz ‘17

This work This work
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What is the advantage of noise?

Coupling to a dissipative bath

• Alleviates finite-size effects (dissipation stems 
from large systems):

Bertrand, Besserve, Ferrero, TA, in preparation
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What is the advantage of noise?

Coupling to a dissipative bath

• Alleviates finite-size effects (dissipation stems 
from large systems):
✓ Can reach longer times (smaller energies)

Bertrand, Besserve, Ferrero, TA, in preparation

Green’s function computation:
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What is the advantage of noise?

Coupling to a dissipative bath
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What is the advantage of noise?

Coupling to a dissipative bath

• Alleviates finite-size effects (dissipation stems 
from large systems):
✓ Can reach longer times (smaller energies)
✓ Need fewer qubits

• Speeds up state preparation (dissipation helps
reach steady state)

Bertrand, Besserve, Ferrero, TA, in preparation

Green’s function computation:
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Today, many-body platforms with 100-1000 
particles/qubits.

• Dynamics is hard to simulate classically
• But quantum has decoherence…

Probably enough to understand exotic
phenomena beyond classical reach!

( NISQ is for niche applications!)

Crucial: smart combination with classical
methods.

Can we use NISQ beyond quantum many-body 
dynamics (e.g ground state search)?

VQE or beyond?

Today’s examples: 
• Shorter circuit with natural orbitals
• Better convergence properties of PQE than VQE?
• Slave-spin to short-circuit fermionic overhead
• MPS to jump start QC 
• Use noise to our advantage? 

𝑬(𝜽)

𝜽

𝜎 𝐸 ∼
1

2𝑛

What prospects for today’s processors?
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Known issues with the variational quantum eigensolver

𝑬(𝜽)

𝜽

𝜎 𝐸 ∼
1

2𝑛

Interesting variational
circuits are still too long!

Noisy hardware…

Fermion antisymmetry:
𝑐𝑖
†𝑐𝑗 leads to 𝑋𝑖𝑍𝑖+1…𝑍𝑗−1𝑋𝑗

Hence longer circuits!

Measurement of ⟨𝝍𝜽 𝑯 𝝍𝜽⟩:

statistical error Δ𝐸 ≈
𝐻 1

𝑁samples

Typically, 𝐻 1 = 10 Ha, Δ𝐸 = 1mHa…

=> 108 samples / 10 kHz = 3 hours
(x number of optimization steps!)

Barren plateau problem

Is it hopeless?

Better hardware 
or shorter circuits

Better encodings or 
shortcut antisymmetry?

Don’t measure ⟨𝝍𝜽 𝑯 𝝍𝜽⟩, just sample!
Use VQE as input to LSQ algorithms

Adaptive ansatz construction
Smarter initial starting point
Don’t minimize 𝑬(𝜽)
(find zero residues (cf coupled
cluster), …)

Use QC for dynamics!
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Even if we had enough good qubits…
Orthogonality catastrophe in quantum phase estimation

QPE run time: ∝ 𝟏/𝛀

with Ω: overlap of input state with solution

Estimate of Ω:
Ω ≈ 𝑒−𝐼Ω

with

𝐼Ω =
𝐸 − 𝐸0

2

2𝜎2

Louvet, TA, Waintal, 2306.02620

Energy error

Variance

Fit: 𝑰𝛀 ∝ 𝑬 − 𝑬𝟎 ∝ 𝑵
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Even if we had enough good qubits…
Orthogonality catastrophe in quantum phase estimation

QPE run time: ∝ 𝟏/𝛀

with Ω: overlap of input state with solution

Estimate of Ω:
Ω ≈ 𝑒−𝐼Ω

with

𝐼Ω =
𝐸 − 𝐸0

2

2𝜎2

Test on state-of-the-art classical methods:

Therefore: 𝛀 ≈ 𝒆−𝜶𝑵

• Better inputs?
• Better phase estimation algorithms?

Louvet, TA, Waintal, 2306.02620

Energy error

Variance

Fit: 𝑰𝛀 ∝ 𝑬 − 𝑬𝟎 ∝ 𝑵
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