

Materials science and chemistry with quantum algorithms:

from the textbook to the processor

TERATEC TQCI - Quantum algorithms in the NISQ era

Thursday, November 14th 2024

Thomas Ayral Eviden Quantum Lab, France

© © Eviden SAS an atos business **1**

The textbook:

On the one hand:

A complex quantum system

$$
i\hbar \frac{d|\Psi\rangle}{dt} = H(t)|\Psi\rangle
$$

The textbook:

On the one hand:

On the other hand:

A complex quantum system

A complex… artificial… quantum system

The textbook:

On the one hand:

On the other hand:

A complex quantum system

A complex… artificial… quantum system

If $\widetilde{H} \approx H$, we learn something about $|\Psi\rangle$ by measuring $|\widetilde{\Psi}\rangle$!

Exponential advantage for quantum dynamics (Lloyd '96)

Ground state search:

 $H|\Psi\rangle = E|\Psi\rangle$

Ground state search:

 $H|\Psi\rangle = E|\Psi\rangle$

Quantum phase estimation (QPE) algorithm (Kitaev 95)

© Eviden SAS **6 Too long!**

Ground state search:

 $H|\Psi\rangle = E|\Psi\rangle$

Quantum phase estimation (QPE) algorithm (Kitaev 95)

Large Scale Quantum: Tomorrow

Quantum error corrected computers

A lot (millions) of high-quality qubits

EVIDEN

Ground state search:

 $H|\Psi\rangle = E|\Psi\rangle$

Quantum phase estimation (QPE) algorithm (Kitaev 95)

Large Scale Quantum: Tomorrow

Quantum error corrected computers A lot (millions) of high-quality qubits

Most advanced experiments (Rydberg, ions, superconducting qubits):

> Only 10-100 physical qubits, just below threshold

EVIDEN

© Eviden SAS **8 Too long!**

Noisy Intermediate Scale Quantum: Today

- Small number of qubits (10-1000 today)
- High error rates (100-1000 gates)

Large Scale Quantum: Tomorrow

Quantum error corrected computers A lot (millions) of high-quality qubits

Most advanced experiments (Rydberg, ions, superconducting qubits):

> Only 10-100 physical qubits, just below threshold

EVIDEN

© Eviden SAS **9 Too long!**

Too long… also without noise?

Ground state search:

 $H|\Psi\rangle = E|\Psi\rangle$

Quantum phase estimation (QPE) algorithm (Kitaev 95)

Key point: role of overlap $\Omega = \left| \left< \Psi_{\rm guess} \middle| \Psi_0 \right> \right|^2$

> **Need** $\boldsymbol{\theta}(\frac{1}{2})$ $\frac{1}{\Omega}$) repetitions of QPE!

|0⟩

Too long… also without noise?

Ground state search:

 $H|\Psi\rangle = E|\Psi\rangle$

Quantum phase estimation (QPE) algorithm (Kitaev 95)

Key point: role of overlap $\Omega = \left| \left< \Psi_{\rm guess} \middle| \Psi_0 \right> \right|^2$

Need $\boldsymbol{\theta}(\frac{1}{2})$ $\frac{1}{\Omega}$) repetitions of QPE!

We found a formula to assess Ω given the energy + variance of Ψ_{guess} (+ estimate of E_0).

Applied it to advanced classical methods.

Outcome:

decreases exponentially with molecule size!

What can one do with today's processors?

The bread-and-butter NISQ algorithm: the variational quantum eigensolver

(Peruzzo et al 2014)

The bread-and-butter NISQ algorithm: the variational quantum eigensolver

Idea: try to minimize use of quantum resources

(Peruzzo et al 2014)

EVIDEN

EVIDEN

Electronic structure Hamiltonian:

Fermion antisymmetry:

 $c_4^+|0010\rangle = -|0011$

 σ_4^+ |0010 $\rangle =$ |0011

EVIDEN

EVIDEN

Outline

Can we shorten circuits?

Can we even avoid fermionic rules?

Hybridizing tensor networks and quantum algorithms

Could we use quantum noise to our advantage?

EVIDEN

Outline

Can we shorten circuits?

Can we even avoid fermionic rules?

Hybridizing tensor networks and quantum algorithms

Could we use quantum noise to our advantage?

The importance of the orbital basis

Consider

$$
H = \sum_{pq} h_{pq} c_p^{\dagger} c_q + \frac{1}{2} \sum_{pqrs} h_{pqrs} c_p^{\dagger} c_q^{\dagger} c_r c_s
$$

Hartree-Fock method: define

$$
\tilde{c}_i^{\dagger} = \sum_p V_{ip} c_p^{\dagger}
$$

Find orbital transformation V s.t HF wavefunction $\Psi(V)$) = $\tilde{c}_{i_1}^{\dagger} \cdots \tilde{c}_{i_{N_e}}^{\dagger}$ $\begin{array}{cc} \uparrow & |00...0 \end{array}$

minimizes $\langle \Psi(V)|H|\Psi(V)\rangle$

EVIDEN

The importance of the orbital basis

Consider

$$
H = \sum_{pq} h_{pq} c_p^{\dagger} c_q + \frac{1}{2} \sum_{pqrs} h_{pqrs} c_p^{\dagger} c_q^{\dagger} c_r c_s
$$

Hartree-Fock method: define

$$
\tilde{c}_i^{\dagger} = \sum_p V_{ip} c_p^{\dagger}
$$

Find orbital transformation V s.t HF wavefunction $\Psi(V)$) = $\tilde{c}_{i_1}^{\dagger} \cdots \tilde{c}_{i_{N_e}}^{\dagger}$ $\begin{array}{cc} \uparrow & |00...0 \end{array}$

minimizes $\langle \Psi(V) | H | \Psi(V) \rangle$

Quantum computer representation?

In $\tilde{c}_i^{\scriptscriptstyle \top}$ \tilde{c}_i^\dagger (molecular orbital) basis: $\ket{\Psi(V)} = \tilde{c}_{i_1}^\dagger \cdots \tilde{c}_{i_{N_e}}^\dagger$ $\begin{array}{cc} \uparrow & |00...0 \end{array}$

The importance of the orbital basis

Consider

$$
H = \sum_{pq} h_{pq} c_p^{\dagger} c_q + \frac{1}{2} \sum_{pqrs} h_{pqrs} c_p^{\dagger} c_q^{\dagger} c_r c_s
$$

Hartree-Fock method: define

$$
\tilde{c}_i^{\dagger} = \sum_p V_{ip} c_p^{\dagger}
$$

Find orbital transformation V s.t HF wavefunction $\Psi(V)$) = $\tilde{c}_{i_1}^{\dagger} \cdots \tilde{c}_{i_{N_e}}^{\dagger}$ $\begin{array}{cc} \uparrow & |00...0 \end{array}$

minimizes $\langle \Psi(V) | H | \Psi(V) \rangle$

Quantum computer representation?

In $\tilde{c}_i^{\scriptscriptstyle \top}$ \tilde{c}_i^\dagger (molecular orbital) basis: $\ket{\Psi(V)} = \tilde{c}_{i_1}^\dagger \cdots \tilde{c}_{i_{N_e}}^\dagger$ $\begin{array}{cc} \uparrow & |00...0 \end{array}$

In e.g original basis... $|\Psi(V)\rangle$ much more complicated!

Beyond Hartree -Fock?

In original basis:

Can we find a (the?) basis that most simplifies the circuit?

Beyond Hartree-Fock?

In original basis:

The natural orbital basis

The basis with fewest Slater determinants, hence shortest circuit!

How to compute it ?

Can we find a (the?) basis that most simplifies the circuit?

Diagonalize

$$
D_{pq} = \langle \Psi | c_p^{\dagger} c_q | \Psi \rangle = V_{pi} n_i V_{iq}^{\dagger}
$$

EVIDEN

Besserve, TA, PRB '22 Besserve, Ferrero, TA, 2406.14170

|Ψ⟩ is unknown! Determine RDM iteratively

(Grimsley 2019)

Besserve, TA, PRB '22 Besserve, Ferrero, TA, 2406.14170

|Ψ⟩ is unknown! Determine RDM iteratively

(Grimsley 2019)

Besserve, TA, PRB '22 Besserve, Ferrero, TA, 2406.14170

 $|\Psi\rangle$ is unknown! Determine RDM iteratively $\qquad \qquad \qquad$ Application:

Hubbard model (here N=2 sites):

Simplest model for high-temperature superconductors

EVIDEN

Besserve, TA, PRB '22 Besserve, Ferrero, TA, 2406.14170

One method to reduce sensitivity to decoherence.

Still many issues with VQE (even without noise!)

One method to reduce sensitivity to decoherence.

Still many issues with VQE (even without noise!)

• Measurement problem: $\langle \psi_{\theta} | H | \psi_{\theta} \rangle$ known only up to statistical error

$$
\Delta E \approx \frac{\|H\|_1}{\sqrt{N_{\text{samples}}}}
$$

One method to reduce sensitivity to decoherence.

Still many issues with VQE (even without noise!)

• Measurement problem: $\langle \psi_{\theta} | H | \psi_{\theta} \rangle$ known only up to statistical error

> $\Delta E \approx$ $H\|_1$ $N_{\rm samples}$ mHa $\implies \Delta E \approx \frac{||H||_1}{\sqrt{1-\frac{1}{2}}}\$ Ha

> > => Lots of samples (days/months)

(Wecker 2017)

One method to reduce sensitivity to decoherence.

Still many issues with VQE (even without noise!)

• Measurement problem: $\langle \psi_{\theta} | H | \psi_{\theta} \rangle$ known only up to statistical error

> $\Delta E \approx$ $H\|_1$ $N_{\rm samples}$ mHa $\implies \Delta E \approx \frac{||H||_1}{\sqrt{1-\frac{1}{2}}}\$ Ha

> > => Lots of samples (days/months)

(Wecker 2017)

• Barren plateau problem (McClean 2018)

$$
E(\theta)
$$

Ways out?

- Clever initialization
- Change way of optimizing
- \bullet (etc)

Find zeroes instead of minimizing: the projective quantum eigensolver (PQE)

Chemistry: Unitary Coupled Cluster ansatz $U(\vec{\theta})$ |HF) VQE: minimize ⟨HF|U[†]($\vec{\theta}$)HU($\vec{\theta}$)|HF)

PQE: find zeros of 'residues': Stair et al '22

 $r_{\!\mu}\big(\vec{\theta}\,\big) = \langle \text{EX}_{\mu}|U^{\dagger}\left(\vec{\theta}\,\big) H U \right(\vec{\theta}\,)\vert$ HF)

with $\left|\text{EX}_{\mu}\right\rangle = c^{\dagger}_{a}c_{i}|HF\rangle$, $c^{\dagger}_{a}c^{\dagger}_{b}c_{i}c_{j}|HF\rangle$, etc

Plazanet, TA, 2410.15129

Chemistry: Unitary Coupled Cluster ansatz $U(\vec{\theta})$ |HF) VQE: minimize ⟨HF|U[†]($\vec{\theta}$)HU($\vec{\theta}$)|HF) PQE: find zeros of 'residues': Stair et al '22 **Very similar to projective CC equations**

 $r_{\!\mu}\big(\vec{\theta}\,\big) = \langle \text{EX}_{\mu}|U^{\dagger}\left(\vec{\theta}\,\big) H U \right(\vec{\theta}\,)\vert$ HF)

with $\left|\text{EX}_{\mu}\right\rangle = c^{\dagger}_{a}c_{i}|HF\rangle$, $c^{\dagger}_{a}c^{\dagger}_{b}c_{i}c_{j}|HF\rangle$, etc

Root finding: Newton-Raphson algorithm

- Convergence guarantees! (Newton-Kantorovitch theorem)
- Residues -> upper bound energy error (Temple inequality)

Root finding: Newton-Raphson algorithm

- Convergence guarantees! (Newton-Kantorovitch theorem)
- Residues -> upper bound energy error (Temple inequality)

Plazanet, TA, 2410.15129

EVIDEN

Outline

Can we shorten circuits?

Can we even avoid fermionic rules? Hubbard physics with Rydberg processors

Hybridizing tensor networks and quantum algorithms

Could we use quantum noise to our advantage?

Mott physics in the Hubbard model

Typical evolution of the spectral function:

Mott physics in the Hubbard model

de' Medici 2005

Goal: avoid overhead of fermion-to-qubit translation

$$
H = -t \sum_{\langle ij \rangle \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}
$$

"Slave-spin theory": decompose

Michel, Henriet, Domain, Browaeys, TA, PRB 24

Interacting electrons (Hubbard model)

de' Medici 2005 Rüegg et al 2010

Hassan 2010

Goal: avoid overhead of fermion-to-qubit translation

$$
H = -t \sum_{\langle ij \rangle \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}
$$

"Slave-spin theory": decompose

 $c_{i\sigma}^{\dagger} = Z_i f_{i\sigma}^{\dagger}$

Larger Hilbert space: only a smaller subspace is physical:

Michel, Henriet, Domain, Browaeys, TA, PRB 24

Interacting electrons (Hubbard model)

Goal: avoid overhead of fermion-to-qubit translation

$$
H = -t \sum_{\langle ij \rangle \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}
$$

"Slave-spin theory": decompose

 $c_{i\sigma}^{\dagger} = Z_i f_{i\sigma}^{\dagger}$

Larger Hilbert space: only a smaller subspace is physical:

de' Medici 2005 Rüegg et al 2010

Hassan 2010

Approximation: Mean-field decoupling:

 $Z_i Z_j f_{i\sigma}^{\dagger} f_{j\sigma} \approx \langle Z_i Z_j \rangle f_{i\sigma}^{\dagger} f_{j\sigma} + Z_i Z_j \langle f_{i\sigma}^{\dagger} f_{j\sigma} \rangle + const.$

Michel, Henriet, Domain, Browaeys, TA, PRB 24

Interacting electrons (Hubbard model)

Goal: avoid overhead of fermion-to-qubit translation

$$
H = -t \sum_{\langle ij \rangle \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}
$$

"Slave-spin theory": decompose $c_{i\sigma}^{\dagger} = Z_i f_{i\sigma}^{\dagger}$ de' Medici 2005 Rüegg et al 2010 Hassan 2010

Larger Hilbert space: only a smaller subspace is physical:

Approximation: Mean-field decoupling: $Z_i Z_j f_{i\sigma}^{\dagger} f_{j\sigma} \approx \langle Z_i Z_j \rangle f_{i\sigma}^{\dagger} f_{j\sigma} + Z_i Z_j \langle f_{i\sigma}^{\dagger} f_{j\sigma} \rangle + const.$

EVIDEN

Goal: avoid overhead of fermion-to-qubit translation

$$
H = -t \sum_{\langle ij \rangle \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}
$$

"Slave-spin theory": decompose $c_{i\sigma}^{\dagger} = Z_i f_{i\sigma}^{\dagger}$ de' Medici 2005 Rüegg et al 2010 Hassan 2010

Larger Hilbert space: only a smaller subspace is physical:

Approximation: Mean-field decoupling: $Z_i Z_j f_{i\sigma}^{\dagger} f_{j\sigma} \approx \langle Z_i Z_j \rangle f_{i\sigma}^{\dagger} f_{j\sigma} + Z_i Z_j \langle f_{i\sigma}^{\dagger} f_{j\sigma} \rangle + const.$

EVIDEN

Michel, Henriet, Domain, Browaeys, TA, PRB 24

Effective model: Transverse Field Ising model (TFIM):

$$
H_s^{\mathcal{C}} = \sum_{i,j \in \mathcal{C}} J_{ij} S_i^z S_j^z + \frac{U}{4} \sum_{i \in \mathcal{C}} S_i^x + \sum_{i \in \mathcal{C}} h_i S_i^z,
$$

… very close to Rydberg atom Hamiltonian!

$$
\hat{H}_{\text{Rydberg}} = \sum_{i \neq j} \frac{C_6}{|\mathbf{r}_i - \mathbf{r}_j|^6} \hat{n}_i \hat{n}_j + \frac{\hbar \Omega(\tau)}{2} \sum_i \hat{S}_i^x - \hbar \delta(\tau) \sum_i \hat{n}_i,
$$

Review: Browaeys & Lahaye 2020

Michel, Henriet, Domain, Browaeys, TA, PRB 24

Effective model: Transverse Field Ising model (TFIM):

$$
H_s^{\mathcal{C}} = \sum_{i,j \in \mathcal{C}} J_{ij} S_i^z S_j^z + \frac{U}{4} \sum_{i \in \mathcal{C}} S_i^x + \sum_{i \in \mathcal{C}} h_i S_i^z,
$$

… very close to Rydberg atom Hamiltonian!

$$
\hat{H}_{\text{Rydberg}} = \sum_{i \neq j} \frac{C_6}{|\mathbf{r}_i - \mathbf{r}_j|^6} \hat{n}_i \hat{n}_j + \frac{\hbar \Omega(\tau)}{2} \sum_i \hat{S}_i^x - \hbar \delta(\tau) \sum_i \hat{n}_i,
$$

Review: Browaeys & Lahaye 2020

Main challenges:

- Optimize atoms positions to reproduce J_{ij}
- Check robustness to decoherence

Michel, Henriet, Domain, Browaeys, TA, PRB 24

Effective model: Transverse Field Ising model (TFIM):

$$
H_s^{\mathcal{C}} = \sum_{i,j \in \mathcal{C}} J_{ij} S_i^z S_j^z + \frac{U}{4} \sum_{i \in \mathcal{C}} S_i^x + \sum_{i \in \mathcal{C}} h_i S_i^z,
$$

… very close to Rydberg atom Hamiltonian!

$$
\hat{H}_{\text{Rydberg}} = \sum_{i \neq j} \frac{C_6}{|\mathbf{r}_i - \mathbf{r}_j|^6} \hat{n}_i \hat{n}_j + \frac{\hbar \Omega(\tau)}{2} \sum_i \hat{S}_i^x - \hbar \delta(\tau) \sum_i \hat{n}_i,
$$

Review: Browaeys & Lahaye 2020

Main challenges:

- Optimize atoms positions to reproduce J_{ij}
- Check robustness to decoherence

Rydberg algorithmics:

• Equilibrium: annealing algorithm to prepare ground state

Michel, Henriet, Domain, Browaeys, TA, PRB 24

Effective model: Transverse Field Ising model (TFIM):

$$
H_s^{\mathcal{C}} = \sum_{i,j \in \mathcal{C}} J_{ij} S_i^z S_j^z + \frac{U}{4} \sum_{i \in \mathcal{C}} S_i^x + \sum_{i \in \mathcal{C}} h_i S_i^z,
$$

… very close to Rydberg atom Hamiltonian!

$$
\hat{H}_{\text{Rydberg}} = \sum_{i \neq j} \frac{C_6}{|\mathbf{r}_i - \mathbf{r}_j|^6} \hat{n}_i \hat{n}_j + \frac{\hbar \Omega(\tau)}{2} \sum_i \hat{S}_i^x - \hbar \delta(\tau) \sum_i \hat{n}_i,
$$

Review: Browaeys & Lahaye 2020

Main challenges:

- Optimize atoms positions to reproduce J_{ij}
- Check robustness to decoherence

Rydberg algorithmics:

• Equilibrium: annealing algorithm to prepare ground state

Michel, Henriet, Domain, Browaeys, TA, PRB 24

Effective model: Transverse Field Ising model (TFIM):

$$
H_{\rm s}^{\mathcal{C}} = \sum_{i,j \in \mathcal{C}} J_{ij} S_i^z S_j^z + \underbrace{\left\{ \frac{U}{4} \right\} \sum_{i \in \mathcal{C}} S_i^x}_{i \in \mathcal{C}} + \sum_{i \in \mathcal{C}} h_i S_i^z,
$$

… very close to Rydberg atom Hamiltonian!

$$
\hat{H}_{\rm Rydberg} = \sum_{i \neq j} \frac{C_6}{|{\bf r}_i - {\bf r}_j|^6} \hat{n}_i \hat{n}_j + \left[\!\!\frac{\hbar\Omega(\tau)}{2}\!\!\right] \! \sum_i \hat{S}^x_i - \hbar\delta(\tau) \sum_i \hat{n}_i,
$$

Review: Browaeys & Lahaye 2020

Main challenges:

- Optimize atoms positions to reproduce J_{ij}
- Check robustness to decoherence

Rydberg algorithmics:

• Equilibrium: annealing algorithm to prepare ground state

(Can also do dynamics: quench of *is a Rabi quench!)*

Michel, Henriet, Domain, Browaeys, TA, PRB 24

Effective model: Transverse Field Ising model (TFIM):

$$
H_{\rm s}^{\mathcal{C}} = \sum_{i,j \in \mathcal{C}} J_{ij} S_i^z S_j^z + \underbrace{\boxed{U}}_{4} \sum_{i \in \mathcal{C}} S_i^x + \sum_{i \in \mathcal{C}} h_i S_i^z,
$$

… very close to Rydberg atom Hamiltonian!

$$
\hat{H}_{\rm Rydberg} = \sum_{i \neq j} \frac{C_6}{|\mathbf{r}_i - \mathbf{r}_j|^6} \hat{n}_i \hat{n}_j + \frac{\hbar \Omega(\tau)}{2} \sum_i \hat{S}_i^x - \hbar \delta(\tau) \sum_i \hat{n}_i,
$$

Review: Browaeys & Lahaye 2020

Main challenges:

- Optimize atoms positions to reproduce J_{ij}
- Check robustness to decoherence

Rydberg algorithmics:

• Equilibrium: annealing algorithm to prepare ground state

(Can also do dynamics: quench of U is a Rabi quench!)

Ongoing experimental realization @Pasqal!

EVIDEN

Outline

Can we shorten circuits?

Can we even avoid fermionic rules? Hubbard physics with Rydberg processors

Hybridizing tensor networks and quantum algorithms Jump-starting quantum computations

Could we use quantum noise to our advantage?

Google supremacy?

Sycamore, 53 qubits

(Arute et al '19)

Sampling from random circuits

200 seconds! (and $F = 0.2\%$!)

classical emulation: 10,000 years

Google supremacy?

Sycamore, 53 qubits

(Arute et al '19)

Sampling from random circuits

200 seconds! (and $F = 0.2\%$!)

Morvan et al '23

What happened? TA et al, PRXQ 2023

Sycamore, 53 qubits **Eagle, 127 qubits** Eagle, 127 qubits

Sampling from random circuits

(Arute et al '19)

200 seconds! (and $F = 0.2\%$!)

classical emulation: 10,000 years

Morvan et al '23

What happened? TA et al, PRXQ 2023

Google supremacy? IBM useful advantage?

(Kim et al '23)

Quench on transverse Ising model

Google supremacy? IBM useful advantage? (Kim et al '23) (Arute et al '19) Sycamore, 53 qubits **Eagle, 127 qubits** Eagle, 127 qubits Sampling from random circuits Quench on transverse Ising model 200 seconds! (and $F = 0.2\%$!) $H=-J\sum_{\langle i,j\rangle}Z_iZ_j+h\sum_iX_i,$ classical emulation: 10,000 years $O = \langle X_{37,41,52,56,57,58,62,79} Z_{75} Y_{38,40,42,63,72,80,90,91} \rangle$ What $\begin{array}{ccc} \hline \text{happed:} & \text{magenta:} \\ \hline \text{happed:} & \text{magenta:} \\ \hline \end{array}$ $\begin{array}{ccc} \text{Eagle Processor} & \text{mational:} \\ \hline \end{array}$ 1 million noisy samples 1 amp. Exp. Tindall et al '23 MPS $\chi = 1204$ **FLOPs FLOPs** XEB fid. Time TA et al, BP-TNS, $\chi = 25$ $\left| 6.44 \cdot 10^{17} \right| 2.60 \cdot 10^{17} \left| 2.24 \cdot 10^{-3} \right|$ PRXQ 2023SYC-53 [9] 6.18 s (also Begusic & Chan '23, 0.5 Kechedzhi et al '23, Dalla Torre Morvan et al '23 & Roses '23) 0.0 $\pi/4$ θ_h 3 $\pi/8$ $\pi/2$

EVIDEN

Method to beat the exponential wall?

Generic wavefunction:

Representation:

 $\psi_{b_1b_2b_3} =$

 2^n

No free lunch: if entanglement S, **need**

 $\chi\gtrsim 2^S$

EVIDEN

Tensor network (TN) showstopper:

Need $\chi \gtrsim 2^S$

with S : entanglement entropy

Tensor network (TN) showstopper:

Need $\chi \gtrsim 2^S$

with S : entanglement entropy

Hard example: quench of Ising model

Tensor network (TN) showstopper:

Need $\chi \gtrsim 2^S$

with S : entanglement entropy

Hard example: quench of Ising model

Quantum computation (QC) showstopper:

Fidelity reduction $F \propto e^{-p N_{\rm g}}$

Large $N_{\rm g}$ for accurate Suzuki-Trotter time evolution:

$$
e^{-iHt} = \prod_{k}^{N_t} \prod_{\langle ij \rangle} R_{zz}(ij) \prod_{i} R_{X}(i) + O\left(\frac{t}{N_t}\right)^2
$$

Tensor network (TN) showstopper:

Need $\chi \gtrsim 2^S$

with S : entanglement entropy

Hard example: quench of Ising model

Quantum computation (QC) showstopper:

Fidelity reduction $F \propto e^{-p N_{\rm g}}$

Large $N_{\rm g}$ for accurate Suzuki-Trotter time evolution:

$$
e^{-iHt} = \prod_{k}^{N_t} \prod_{(ij)} R_{zz}(ij) \prod_{i} R_X(i) + O\left(\frac{t}{N_t}\right)^2
$$

Two key ideas:

 \Rightarrow Push TN computation to its limit and take over with QC

 \Rightarrow Use TN techniques to compress quantum circuits

Hybridizing tensor networks and quantum computation Anselme-Martin, TA et al, PRA 24

Formal target: fine-grained Suzuki-Trotter time evolution:

See also Causer et al '23

Too many steps for TEBD (limited RAM) Too many steps for QC (limited coherence)

Hybridizing tensor networks and quantum computation

Formal target: fine-grained Suzuki-Trotter time evolution:

See also Causer et al '23 Anselme-Martin, TA et al, PRA 24

Too many steps for TEBD (limited RAM) Too many steps for QC (limited coherence)

Hybridizing tensor networks and quantum computation

Formal target: fine-grained Suzuki-Trotter time evolution:

See also Causer et al '23 Anselme-Martin, TA et al, PRA 24

Too many steps for TEBD (limited RAM) Too many steps for QC (limited coherence)

(classical) TEBD computation:

EVIDEN

Hybridizing tensor networks and quantum computation

 $n_{\rm MPS}$

See also Causer et al '23 Anselme-Martin, TA et al, PRA 24

(classical) TEBD computation:

 $n_{\rm MPO}$

 n_{MPO}

Run circuit:

EVIDEN

Formal target: fine-grained Suzuki-Trotter time evolution:
Hybridizing tensor networks and quantum computation

Formal target: fine-grained Suzuki-Trotter time evolution:

(classical) TEBD computation:

 $n_{\rm MPS}$

=

 $\chi_{\rm MPS} = 2^{N_L^{\rm MPS}}$

See also Causer et al '23 Anselme-Martin, TA et al, PRA 24

Too many steps for TEBD (limited RAM) Too many steps for QC (limited coherence)

(classical) TEBD computation:

 $N_L^{MPS} \ll n_{MPS}$ $N_L^{MP0} \ll n_{MP0}$

EVIDEN

QMPS circuit ansatz:

Depth N_L^{MPS}

Experimental proof of concept on IBM quantum computers

Look at magnetization for quenched Ising

 $H=-J\sum_{\langle i,j\rangle}Z_iZ_j+h\sum_iX_i,$

- 10 spins/qubits (toy model)
- Assume fixed RAM, hence max bond dim \Rightarrow max time to keep MPS 'exact'

See also Causer et al '23 Anselme-Martin, TA et al, PRA 24

Experimental proof of concept on IBM quantum computers

Look at magnetization for quenched Ising

 $H=-J\sum_{\langle i,j\rangle}Z_iZ_j+h\sum_iX_i,$

- 10 spins/qubits (toy model)
- Assume fixed RAM, hence max bond dim \Rightarrow max time to keep MPS 'exact'

0123456789

0123456789

0123456789

0123456789

EVIDEN

Time

 -1.00

Experimental proof of concept on IBM quantum computers

Look at magnetization for quenched Ising

 $H=-J\sum_{\langle i,j\rangle}Z_iZ_j+h\sum_iX_i,$

- 10 spins/qubits (toy model)
- Assume fixed RAM, hence max bond dim \Rightarrow max time to keep MPS 'exact'
- Hybrid approach outperforms both others

Only proof of concept!

- **Artificially small RAM budget**: realistic budget would make it hard for QC to compete
- True challenge for TN: **2D (but same ideas apply)**

See also Causer et al '23 Anselme-Martin, TA et al, PRA 24

Conclusions of Part 3

Double role of tensor networks:

- Often the most advanced classical algorithm: **a yardstick for quantum advantage** (deflate quantum advantage claims)
- Can jump-start a quantum computation! (Here, limited to 1D TN… true challenge: 2D)

Conclusions of Part 3

Double role of tensor networks:

- Often the most advanced classical algorithm: **a yardstick for quantum advantage** (deflate quantum advantage claims)
- Can jump-start a quantum computation! (Here, limited to 1D TN… true challenge: 2D)

Not mentioned here… **a third role:**

- Tensor networks are also powerful tools to **emulate execution of quantum circuits**!
- Help interpret results of QCs with 100-1000 noisy qubits!

Key advantage: decoherence reduces entanglement *S*… and recall: $\pmb{\chi} \gtrsim \mathbf{2}^{\pmb{S}}$

 \Rightarrow Noisy QCs are easier for TNs!

Eviden develops QC emulators with 100s qubits!

See Müller, TA, Bertrand, 2403.00152

EVIDEN

Outline

Can we shorten circuits?

Can we even avoid fermionic rules? Hubbard physics with Rydberg processors

Hybridizing tensor networks and quantum algorithms Jump-starting quantum computations

Could we use quantum noise to our advantage?

Can we use qubit noise to simulate a thermodynamical bath?

Bertrand, Besserve, Ferrero, TA, in preparation

Noisy quantum computer

Dissipative processes:

- Amplitude damping \Rightarrow $S^- = |0\rangle\langle 1|$
- Dephasing \rightarrow Z

formally the same

Many-body system + thermodynamic bath

Dissipative processes:

- Creation of particle $\rightarrow c^{\dagger}$ \bullet
- Annihilation of particle $\rightarrow c$ \bullet

Dynamical mean field theory, an ideal playground

From a lattice problem to an atomic problem coupled to a bath

Bertrand, Besserve, Ferrero, TA, in preparation

Georges et al '96

Dynamical mean field theory, an ideal playground

From a lattice problem to an atomic problem coupled to a bath

A workflow to leverage noisy qubits

A workflow to leverage noisy qubits

Coupling to a dissipative bath

• Alleviates **finite-size effects** (dissipation stems from large systems):

Coupling to a dissipative bath

• Alleviates **finite-size effects** (dissipation stems from large systems):

✓ Can reach longer times (smaller energies)

Green's function computation:

Coupling to a dissipative bath

EVIDEN

Coupling to a dissipative bath

Conclusion

Today, many-body platforms with **100-1000 particles/qubits**.

Today, many-body platforms with **100-1000 particles/qubits**.

- **Dynamics** is hard to simulate classically
- But quantum has decoherence…

Today, many-body platforms with **100-1000 particles/qubits**.

- **Dynamics** is hard to simulate classically
- But quantum has decoherence…

Probably enough to **understand exotic phenomena beyond classical reach**!

Today, many-body platforms with **100-1000 particles/qubits**.

- **Dynamics** is hard to simulate classically
- But quantum has decoherence…

Probably enough to **understand exotic phenomena beyond classical reach**!

 $(\Leftrightarrow$ NISQ is for niche applications!)

Crucial: smart combination with classical methods.

Today, many-body platforms with **100-1000 particles/qubits**.

- **Dynamics** is hard to simulate classically
- But quantum has decoherence…

Probably enough to **understand exotic phenomena beyond classical reach**!

 $(\Leftrightarrow$ NISQ is for niche applications!)

Crucial: smart combination with classical methods.

Can we use NISQ **beyond quantum many-body dynamics (e.g ground state search)**?

VQE or beyond?

Today, many-body platforms with **100-1000 particles/qubits**.

- **Dynamics** is hard to simulate classically
- But quantum has decoherence…

Probably enough to **understand exotic phenomena beyond classical reach**!

 $(\Leftrightarrow$ NISQ is for niche applications!)

Crucial: smart combination with classical methods.

Can we use NISQ **beyond quantum many-body dynamics (e.g ground state search)**?

VQE or beyond?

Today's examples:

- Shorter circuit with natural orbitals
- Better convergence properties of PQE than VQE?
- Slave-spin to short-circuit fermionic overhead
- MPS to jump start QC
- Use noise to our advantage?

EWIDEM

Thanks

thomas.ayral@eviden.com

Confidential information owned by Eviden SAS, to be used by the recipient only. This document, or any part of it, may not be reproduced, copied, circulated and/or distributed nor quoted without prior written approval from Eviden SAS.

© Eviden SAS

Known issues with the variational quantum eigensolver

Measurement of $\langle \psi_{\theta} | H | \psi_{\theta} \rangle$: statistical error Δ $E \approx \frac{\|H\|_1}{\|N\|_2}$ $N_{\tt{samples}}$ Typically, $||H||_1 = 10$ Ha, $\Delta E = 1$ mHa...

 \approx 10⁸ samples / 10 kHz = 3 hours (x number of optimization steps!)

Don't measure $\langle \psi_{\theta} | H | \psi_{\theta} \rangle$, just sample! **Use VQE as input to LSQ algorithms**

 $\sigma(E) \thicksim$

1

 2^n

Barren plateau problem

 $\boldsymbol{E}(\boldsymbol{\theta})$

© Eviden SAS **97 (find zero residues (cf coupled** $\boldsymbol{\theta}$ **Adaptive ansatz construction Smarter initial starting point Don't minimize** $E(\theta)$ **cluster), …)**

EVIDEN Courtesy of L.P Henry & L. Henriet @Pasqal

EVIDEN

Courtesy of L.P Henry & L. Henriet @Pasqal

© Eviden SAS **99**

Courtesy of L.P Henry & L. Henriet @Pasqal

Courtesy of L.P Henry & L. Henriet @Pasqal

Even if we had enough good qubits…

Orthogonality catastrophe in quantum phase estimation

QPE run time: $\propto 1/\Omega$

with $Ω$: overlap of input state with solution

Estimate of Ω:

 $\Omega \approx e^{-I_{\Omega}}$

with

Louvet, TA, Waintal, 2306.02620

Even if we had enough good qubits…

Louvet, TA, Waintal, 2306.02620

Orthogonality catastrophe in quantum phase estimation

QPE run time: $\propto 1/\Omega$

 $\Omega \approx e^{-I_{\Omega}}$

with $Ω$: overlap of input state with solution

Estimate of Ω:

with

Test on state-of-the-art classical methods:

Therefore: $\Omega \approx e^{-\alpha N}$

- Better inputs?
- Better phase estimation algorithms?

