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Monte Carlo on Quantum Computers: overview and motivation

Montanaro algorithm

Quantum speedup of Monte Carlo methods,

A. Montanaro, 2015

Low-depth amplitude estimation on a trapped-ion 

quantum computer

T. Giurgica-Tiron et al., 2022

Amplitude amplitication on a real quantum computer

Quantum random walks - an introductory overview,

J. Kempe, 2003

Quantum random walk

Benchmarking Amplitude Estimation on a 

Superconducting Quantum Computer,

S. Certo et al, 2022

https://arxiv.org/abs/1504.06987
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.4.033034
https://arxiv.org/abs/quant-ph/0303081
https://arxiv.org/abs/2201.06987


3TRT-Fr/STI/LCHP/MN,24/0040 

{OPEN}

Particle transport on a grid-graph (1/2)

Step 1: Discretize the geometry

13 qubits7 qubits 9 qubits

Gate-Based Circuit Designs For Quantum Adder Inspired Quantum 

Random Walks on Superconducting Qubits, D. Koch et al., 2021

Step 2: define shift operator
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Monte Carlo particle transport on quantum computers, 

Noé Olivier and Michel Nowak, 2024

https://arxiv.org/abs/2012.10268
https://arxiv.org/abs/2410.19489
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Particle transport on a grid-graph (2/2)

Step 3: particle transport coin operator

 Geometry/cross section aware coin operator

Quantum circuits for discrete-time quantum walks

with position-dependent coin operator

Ugo Nzongani et al, 2023

Efficient Quantum Circuits for Non-Unitary and Unitary 

Diagonal Operators with Space-Time-Accuracy trade-offs

J. Zylberman et al., 2024
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Monte Carlo particle transport on quantum computers, 

Noé Olivier and Michel Nowak, 2024

 Boundary conditions

– set local scattering probability to 0

– Reset coin at each step

https://arxiv.org/abs/2211.05271
https://arxiv.org/abs/2404.02819
https://arxiv.org/abs/2410.19489
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Circuits for particle transport

coin preparation transport 1 iteration

Circuit with positions only

Circuit with score

score preparation

Swap test

FINAL SCORE

FINAL POSITIONS
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Monte Carlo particle transport on quantum computers, 

Noé Olivier and Michel Nowak, 2024

https://arxiv.org/abs/2410.19489
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Flux comparison

classical finite differences classical Monte Carlo measured quantum

Monte Carlo particle transport on quantum computers, 

Noé Olivier and Michel Nowak, 2024

https://arxiv.org/abs/2410.19489
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Quantum walk failure in the analog regime

Guarantee of convergence

Quantum walks can find a marked element on any graph,

Hari Krovi et al, 2010

→ Especially when starting from a localized state

→ Especially when they are absorbing conditions

OK, but not always in a reasonable amount of time

https://arxiv.org/abs/1002.2419
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The need for an importance map

Scalar importance map

 Computed with a finite difference solver

 Gives the expected contribution for 1 particle 

starting from x to the detector response

Classical results with variance reduction

improved performance measure

x10

same convergence rates
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Importance Sampling on quantum computers (1/2)

Exponential transform

Collision biasing

Extension to quantum formalism

 Renormalize sampled distribution by importance map

 Restart quantum walk for one shift operator call

Population control

 Splitting

 Roulette
Variance reduction techniques

CEA, 2018

https://www.cea.fr/energies/tripoli-4/Pages/Code%20features/Variance-reduction-techniques.aspx
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Importance Sampling on quantum computers (2/2)

Discussion

 Tradoff between querying

– The shift operator 

– the importance map

 Constant hitting probability

– With respect to importance map queries

 Increasing hitting probability

– By minimizing the number of quantum shift queries

 Warning

– Periodic boundary conditions applied

– Reflective too expensive

0 counts

better?
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Adaptive Multilevel Splitting on quantum computers

Classical AMS

 Restart K particles at each AMS iteration

Extension to a quantum formalism?

 No need to follow weights

– Because the weight is global for the restarted particles

 Selection & Splitting needs to be classically implemented

 Study tradoff between

– Classical queries to the importance map

– Quantum queries to the shift operator

Adaptive multilevel splitting for Monte Carlo particle transport, 

H. Louvin et al, 2017

Accelerating Monte Carlo particle transport with adaptively 

generated importance maps, M. Nowak, 2018

https://www.epj-conferences.org/articles/epjconf/pdf/2017/22/epjconf_icrs2017_06006.pdf
https://theses.hal.science/tel-02135102
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Amplitude estimation failure in the analog regime

Exponential integration with attenuation

Iterative Quantum Amplitude Estimation

D. Grinko et al, 2021
Quantum amplitude amplification and estimation, 

Brassard et al, 2000

https://arxiv.org/abs/1504.06987
https://arxiv.org/pdf/quant-ph/0005055
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Implementation and convergence  of
Amplified Amplitude Estimation: Exploiting Prior Knowledge to 

Improve Estimates of Expectation Values, S. Simon et al. 2024

x3

x3

x3

faster convergence rates improved performance measure

https://arxiv.org/abs/2402.14791
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Conclusion and perspectives

Perspectives

 Adaptive Multilevel Splitting on quantum computers

– Coming soon

 Merge variance reduction techniques with amplitude amplification

– Extract hitting probabilities

 Preprint soon

Results

 Monte Carlo proposal on quantum computers

– With quantum walks

– Local probabilities of interactions

– Reflective boundary conditions

– « Absorbing » approximation

 Failure of analog quantum walk

– Classical importance sampling applied to quantum walks

– Cannot follow weights of individual particles

– Renormalization proposal

– Tradoff between quantum & classical

 Failure of analog amplitude estimation

– X3 speedup with a priori estimate of the response 

(implementation of paper)

Monte Carlo particle transport on quantum computers, 

Noé Olivier and Michel Nowak, 2024

https://arxiv.org/abs/2410.19489
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