

### **Gaussian Boson Sampling**

#### **Applications**

Jesua EPEQUIN, November 2024







## **Gaussian Boson Sampling**

#### Summary

- Gaussian states are a type of quantum states
- They can be described by a covariance Σ matrix and a vector of means.
- In GBS, Gaussian states are measured using photon-number-resolving detectors.
- Probability of observing S = (s<sub>1</sub>,...,s<sub>m</sub>) is

$$\mathcal{P}(S) = \frac{1}{\sqrt{\det(\sigma_Q)}} \frac{\operatorname{Haf}(K_S)}{s_1! \dots s_m!},$$

- where K and  $\sigma_Q$  is a 2m x 2m symmetric matrix depending on  $\pmb{\Sigma}$ 

• The Hafnian is defined as

$$\operatorname{Haf}(K) = \sum_{\mu \in \operatorname{PMP}} \prod_{(i,j) \in \mu} K_{i,j},$$

where PMP is the set of perfect matching permutations.



### **Gaussian Boson Sampling**

Dense subgraph identification

- If A is adjacency matrix of unweighted graph G, then Haf(A) is number of perfect matchings N<sub>PM</sub>(G).
- Average density defined as :

 $d_{avg}(G) = 2 \sum_{e \in E(S)} w_e S|(|S|-1)$ 

• If W is weighted adjacency matrix, Haf(A) correlates with Average Density.







### **Feature Selection**

**GBS** application

- Feature selection is a combinatorial optimization problem.
- We map database into graph G by considering the entire feature set as the vertex set and using inter-feature *mutual information* to compute edge weights.
- Mutual Information : how much information can be extracted through the knowledge of the other. Low values indicate mutual independence.
- Higher density subgraphs correspond to less redundant features.



### Results

#### Benchmarking on multiple dataset

| Dataset    | Algorithm | Evaluation metrics  |                     |                     |                     |                     |                     |                     |                     |                     |
|------------|-----------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|            |           | Naive Bayes         |                     |                     | Tree                |                     |                     | SVM                 |                     |                     |
|            |           | F1                  | AUC                 | MCC                 | F1                  | AUC                 | MCC                 | F1                  | AUC                 | MCC                 |
| WDBC       | Baseline  | $0.908 \pm 0.044$   | $0.985{\pm}0.017$   | $0.856{\pm}0.068$   | $0.912{\pm}0.055$   | $0.936{\pm}0.034$   | $0.841{\pm}0.063$   | $0.968 \pm 0.029$   | $0.994{\pm}0.010$   | $0.951{\pm}0.045$   |
|            | LSFS      | $0.925{\pm}0.043$   | $0.986{\pm}0.019$   | $0.881 {\pm} 0.070$ | $0.895 \pm 0.048$   | $0.934{\pm}0.037$   | $0.834{\pm}0.064$   | $0.961 \pm 0.032$   | $0.993{\pm}0.010$   | $0.940{\pm}0.048$   |
|            | SPEC      | $0.904 \pm 0.032$   | $0.982{\pm}0.019$   | $0.851{\pm}0.047$   | $0.886 {\pm} 0.039$ | $0.923{\pm}0.035$   | $0.829 {\pm} 0.062$ | $0.933 {\pm} 0.028$ | $0.991{\pm}0.012$   | $0.896{\pm}0.046$   |
|            | GBSFS     | $0.886 {\pm} 0.050$ | $0.972{\pm}0.019$   | $0.824{\pm}0.076$   | $0.887 \pm 0.052$   | $0.921{\pm}0.046$   | $0.832{\pm}0.099$   | $0.973 {\pm} 0.017$ | $0.996 {\pm} 0.007$ | $0.959 {\pm} 0.026$ |
| Ionosphere | Baseline  | $0.911 {\pm} 0.037$ | $0.935{\pm}0.048$   | $0.736{\pm}0.121$   | $0.901 \pm 0.046$   | $0.857 {\pm} 0.069$ | $0.694{\pm}0.131$   | $0.951{\pm}0.044$   | $0.964{\pm}0.054$   | $0.855 {\pm} 0.138$ |
|            | LSFS      | $0.841 {\pm} 0.035$ | $0.832{\pm}0.081$   | $0.449{\pm}0.191$   | $0.913 {\pm} 0.053$ | $0.870 {\pm} 0.074$ | $0.765 {\pm} 0.156$ | $0.938 {\pm} 0.048$ | $0.957{\pm}0.059$   | $0.818{\pm}0.150$   |
|            | SPEC      | $0.756 {\pm} 0.108$ | $0.804{\pm}0.073$   | $0.431{\pm}0.178$   | $0.876 {\pm} 0.054$ | $0.841{\pm}0.078$   | $0.669 {\pm} 0.190$ | $0.939 {\pm} 0.038$ | $0.965 {\pm} 0.046$ | $0.819{\pm}0.119$   |
|            | GBSFS     | $0.914 {\pm} 0.041$ | $0.946{\pm}0.051$   | $0.740{\pm}0.125$   | $0.902 \pm 0.050$   | $0.875 {\pm} 0.046$ | $0.761{\pm}0.104$   | $0.941 \pm 0.041$   | $0.954{\pm}0.046$   | $0.828{\pm}0.124$   |
| Shoppers   | Baseline  | $0.513 {\pm} 0.070$ | $0.827 {\pm} 0.033$ | $0.420{\pm}0.086$   | $0.505{\pm}0.093$   | $0.748 {\pm} 0.049$ | $0.434{\pm}0.106$   | $0.507{\pm}0.069$   | $0.857 {\pm} 0.060$ | $0.482{\pm}0.077$   |
|            | LSFS      | $0.333 {\pm} 0.054$ | $0.719{\pm}0.050$   | $0.206{\pm}0.063$   | $0.193 \pm 0.083$   | $0.553{\pm}0.037$   | $0.059{\pm}0.059$   | 0                   | $0.500{\pm}0.101$   | 0                   |
|            | SPEC      | $0.333 {\pm} 0.054$ | $0.719{\pm}0.050$   | $0.206{\pm}0.063$   | $0.190 \pm 0.081$   | $0.548{\pm}0.037$   | $0.064{\pm}0.062$   | 0                   | $0.500{\pm}0.101$   | 0                   |
|            | GBSFS     | $0.498 {\pm} 0.065$ | $0.843 {\pm} 0.068$ | $0.440{\pm}0.080$   | $0.493 {\pm} 0.096$ | $0.741{\pm}0.051$   | $0.419{\pm}0.102$   | $0.503 {\pm} 0.070$ | $0.872 {\pm} 0.076$ | $0.476{\pm}0.077$   |
| Spectf     | Baseline  | $0.757 {\pm} 0.074$ | $0.847 {\pm} 0.054$ | $0.431 {\pm} 0.080$ | $0.828 \pm 0.047$   | $0.623 {\pm} 0.104$ | $0.202{\pm}0.212$   | $0.884{\pm}0.025$   | $0.801 {\pm} 0.069$ | $0.136 {\pm} 0.199$ |
|            | LSFS      | $0.735 {\pm} 0.082$ | $0.847{\pm}0.092$   | $0.433 {\pm} 0.101$ | $0.811 \pm 0.073$   | $0.635 {\pm} 0.144$ | $0.209{\pm}0.284$   | $0.868 \pm 0.043$   | $0.795{\pm}0.100$   | $0.053{\pm}0.097$   |
|            | SPEC      | $0.731 {\pm} 0.072$ | $0.835{\pm}0.082$   | $0.440{\pm}0.068$   | $0.835 {\pm} 0.071$ | $0.574{\pm}0.108$   | $0.138{\pm}0.237$   | $0.877 \pm 0.028$   | $0.800{\pm}0.108$   | $0.009 {\pm} 0.106$ |
|            | GBSFS     | $0.749 {\pm} 0.072$ | $0.827 {\pm} 0.065$ | $0.398{\pm}0.094$   | $0.834 \pm 0.043$   | $0.649 {\pm} 0.095$ | $0.258 {\pm} 0.168$ | $0.868 {\pm} 0.031$ | $0.737 {\pm} 0.103$ | $0.021{\pm}0.079$   |
| Parkinsons | Baseline  | $0.726 {\pm} 0.129$ | $0.844 {\pm} 0.180$ | $0.404{\pm}0.348$   | $0.881 {\pm} 0.054$ | $0.759{\pm}0.128$   | $0.582{\pm}0.238$   | $0.900 {\pm} 0.074$ | $0.827 {\pm} 0.182$ | $0.496{\pm}0.370$   |
|            | LSFS      | $0.703 \pm 0.140$   | $0.819{\pm}0.148$   | $0.437 {\pm} 0.282$ | $0.875 \pm 0.075$   | $0.715 {\pm} 0.127$ | $0.454{\pm}0.270$   | $0.861 \pm 0.064$   | $0.727 {\pm} 0.209$ | $0.236{\pm}0.351$   |
|            | SPEC      | $0.741 {\pm} 0.132$ | $0.840{\pm}0.161$   | $0.453 {\pm} 0.313$ | $0.862 {\pm} 0.052$ | $0.770 {\pm} 0.115$ | $0.528{\pm}0.226$   | $0.893 {\pm} 0.093$ | $0.906 {\pm} 0.096$ | $0.556 {\pm} 0.341$ |
|            | GBSFS     | $0.780{\pm}0.129$   | $0.820{\pm}0.201$   | $0.442 {\pm} 0.370$ | $0.875 {\pm} 0.068$ | $0.736{\pm}0.170$   | $0.495{\pm}0.293$   | $0.904{\pm}0.067$   | $0.836{\pm}0.187$   | $0.531 {\pm} 0.342$ |



### Results

Win-Draw-Loss

| Dataset                 | Baseline | LSFS    | SPEC      |
|-------------------------|----------|---------|-----------|
| Ionosphere              | 6-0-3    | 6-0-3   | 8-0-1     |
| $\operatorname{Spectf}$ | 5-0-4    | 4-1-4   | 4 - 0 - 5 |
| WDBC                    | 3-0-6    | 3-0-6   | 5-0-4     |
| Shoppers                | 3-0-6    | 9-0-0   | 9-0-0     |
| Parkinsons              | 5-0-4    | 8-1-0   | 3-0-6     |
| Overall                 | 22-0-23  | 30-2-13 | 29-0-16   |







# **Graph coloring**

Problem and Solution

#### Problem

• Coloring graph nodes such that no two adjacent nodes have same color

#### Solution

- Find totally disconnected subgraphs of maximum cardinality (MIS)
- Each subgraph can be assigned to a color

#### Strategy

- Select number of colors K inferior to graph size
- Construct augmented K graph
- Calculate complement of augmented graph
- Find clique in complement graph

GBS

• If clique size not equal to graph size, repeat with K+1 colors



## **Smart Charging**

Introducing use case

• Overlapping Intervals for charging EVs to **one terminal** 

Two EV are compatible :

- if their Charging Intervals (IC) do not overlap
- if they belong to different groups
- Conflict graph representation: G(V,E)

A vertex for each EV

An edge between two vertices

- if two IC overlap
- if two EV belong to the same group





### Win Draw Loss

GBSC vs. DSatur

| No. Stations | Win | Draw | Loss |
|--------------|-----|------|------|
| 4            | 0   | 23   | 0    |
| 8            | 0   | 24   | 0    |
| 12           | 1   | 20   | 0    |
| 16           | 3   | 18   | 0    |
| 24           | 4   | 10   | 5    |
| 32           | 2   | 16   | 2    |
| Total        | 10  | 111  | 7    |



### Win Sample 12 nodes





N. Colors : 5



### Draw

Sample 16 nodes



N. Colors : 4

N. Colors : 4



### **LOSS** Sample 24 nodes



edf

# Thank you

