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2. Problem presentation

Airborne radar built-in test devices

 Data collection

– Radar systems are equipped with built-in test devices that collect functionning data

– Modern radar system functionning is characterized by up to 100.000 binary, discrete 

and continuous variables

– Once the radar is embedded, functionning data cannot be efficiently processed to 

detect anomalies

Anomaly detection at the end of the production chain

 Enables to detect radar teething problems before its embedding

– Advanced analysis of the functionning data collected by the built-in test devices

 Probabilistic approach for anomaly detection in production chain

– Modelization of the functioning of the radar by a mixed graphical model

– Learning of a model corresponding to the good functionning of the system

– Enables the localization of the components source of anomalies by computing the 

likelihood of new acquisition files for the learned model
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3. Problem formulation

 Gibbs distribution associated to the MRF:

𝑝Ω 𝑥𝐶 , 𝑥𝑄 =
𝑔Ω 𝑥𝐶 , 𝑥𝑄

𝑍Ω

𝑤𝑖𝑡ℎ 𝑔Ω 𝑥𝑐, 𝑥𝑄 = exp 𝑥𝐶
𝑇Θ𝑥𝐶 + 𝜇𝑇𝑥𝑄 −

1

2
𝑥𝑄
𝑇Δ𝑥𝑄 + 𝑥𝑐

𝑇Φ𝑥𝑄

𝑎𝑛𝑑 𝑍Ω =෍
𝑥𝐶∈ 0,1 𝑁

exp(𝑥𝐶
𝑇Θ𝑥𝐶)න

ℝ𝑀
exp(𝜇𝑇𝑥𝑄 −

1

2
𝑥𝑄
𝑇Δ𝑥𝑄 + 𝑥𝑐

𝑇Φ𝑥𝑄) 𝑑𝑥𝑄

 Objective :

– Learning the values of 𝛀 = 𝜣, 𝝁, 𝚫,𝜱 corresponding to a good functionning radar 

through a process of gradient descent

 Limitation encountered in previous works:

– Each learning step requires to update the log-likelihood gradient: 
𝜕 ln(𝑝Ω)

𝜕Ω
=

𝜕 ln(𝑔Ω)

𝜕Ω
−

𝜕 ln(𝑍Ω)

𝜕Ω

–
𝜕 ln(𝑍Ω)

𝜕Ω
=

1

𝑍𝛺

𝜕𝑍𝛺

𝜕𝛺
non-trivial (requires to compute 2𝑁 + 264 𝑀 values for each parameters of 𝛺)

– Approximations employed in previous work (stochastic gradient approximation, etc…) 

considerably reduce the accuracy of the model learning.

with 𝑥𝐶 ∈ 0,1 𝑁 the categorical variables (binary and discrete binarized) 
with 𝑥𝑄 ∈ ℝ

𝑀 the quantitative variables (continuous)

with Ω = {Θ, 𝜇, Δ, Φ} the model parameters

Idea
 

Take advantage of quantum 

computing to improve and speed-

up the computation of 
𝜕 ln(𝑍Ω)

𝜕Ω
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3. Problem formulation

 Considering that quantitative variables 𝒙𝑸 follow a Gaussian distribution, 

straightforward calculations lead to :

𝑍Ω = 2𝜋
𝑀
2 Σ

1
2 exp(

1

2
𝜇𝑇Σ𝜇) ෍

𝑥∈ 0,1 𝑁

exp(𝑥𝐶
𝑇Ψ𝑥𝐶)

𝑤𝑖𝑡ℎ Ψ = Θ +
1

2
ΦΣΦ𝑇 + 𝑑𝑖𝑎𝑔 ΦΣ𝜇 𝑠𝑦𝑚𝑒𝑡𝑟𝑖𝑐 𝑎𝑛𝑑 Σ = Δ−1

 Objective :

– Develop a quantum approach to compute σ𝑥∈ 0,1 𝑁 exp(𝑥𝐶
𝑇𝐴𝑥𝐶) for any matrix 𝐴

– Can be used to speed up the computation of each 
𝝏𝒁𝜴

𝝏𝜴𝒊
for 𝛀𝒊 ∈ 𝛀 = 𝜣, 𝝁, 𝜟,𝜱

 One-clean qubit model

– Quantum algorithm designed to estimate the trace of a unitary operator

– For 𝑈 the 2𝑁 × 2𝑁 matrix associated to a unitary operator (a quantum gate) acting on 𝑁

qubits, 𝐑𝐞(𝐓𝐫 𝑼 ) can be deduced from the probability of measuring 𝟎 on an ancillary qubit

Re(Tr 𝑈 ) = 𝑝0 −
1

2
2𝑁+1

Hadamard gates

Idea

Define a unitary 𝑈 such that 

Re(𝑇𝑟 𝑈 ) = σ𝑥∈ 0,1 𝑁 exp(𝑥𝐶
𝑇𝐴𝑥𝐶)

Maximally mixed state
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3. Quantum approach for partition function estimation

Linear Combination of Unitaries (LCU) method:

 Let’s consider a Gibbs distribution 𝑝 𝑥 = exp(𝑔(𝑥))/𝑍 with 𝑥𝐶 ∈ 0,1 𝑁 and 𝑔 𝑥𝐶 = exp(𝑥𝐶
𝑇𝐴𝑥𝐶)

– 𝐻 is defined from the coefficients 𝐴𝑖,𝑗 of 𝑔(𝑥) such that

𝐻 =
−1

𝛽
෍

𝑖,𝑗=1,1

𝑁

𝐴𝑖,𝑗𝑈(𝑖,𝑗) 𝑤𝑖𝑡ℎ 𝛽 =෍
𝑖,𝑗=1,1

𝑁

|𝐴𝑖,𝑗|

– with 𝑈(𝑖,𝑗) diagonal unitary matrices of size 2𝑁 × 2𝑁 such that:

𝑈(𝑖,𝑗) = 𝐼(1)⊗⋯⊗𝐵(𝑖)⊗⋯⊗𝐵(𝑗)⊗⋯⊗ 𝐼(𝑁)

– with 𝐵 =
0 0
0 1

, 𝐼 =
1 0
0 1

and 𝐵(𝑖) corresponding to the application of the operator 𝑩 to qubit 𝒊

 With this construction, we have Tr 𝑒−𝛽𝐻 = σ
𝑥∈ 0,1 𝑁 exp 𝑥𝐶

𝑇𝐴𝑥𝐶 = σ
𝑥∈ 0,1 𝑁 𝑔(𝑥𝐶) = 𝑍

Intuition : Compute straightforwardly 𝑻𝒓(𝒆−𝜷𝑯) with the one-clean qubit model

Problem : It is not straightforward to define 𝐔 = 𝒆−𝜷𝑯

 Chebyshev approximation of 𝒆−𝜷𝑯: 𝑆𝐾 = 𝐼0 𝛽 𝐼𝑁𝑒
𝛽 + 2෍

𝑘=1

𝐾

−1 𝑘𝐼𝑘 𝛽 𝑇𝑘(𝐻)
with 𝐼𝑘 𝛽 the modified Bessel function of the 1𝑠𝑡 kind

with 𝑇𝑘(𝐻) the 𝑘𝑡ℎ Chebyshev polynomial of the 1𝑠𝑡 order 
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3. Quantum approach for partition function estimation

Estimation of 𝐓𝐫 𝑺𝑲

 We have 𝑻𝒓 𝑺𝑲 = 𝐼0 𝛽 2𝑛𝑒𝛽 + 2σ𝑘=1
𝐾 −1 𝑘𝐼𝑘 𝛽 𝑻𝒓(𝑻𝒌 𝑯 )

– Goal : Compute 𝑇𝑟(𝑇𝑘 𝐻 ) with the one-clean qubit model

– Requires to define a unitary operator encoding 𝑇𝑘(𝐻)

 Quantum walk operator 𝑾𝑯 :

 Computation of an estimation 𝝓𝒌 of 𝑻𝒓( 𝑾𝑯
𝒌) with the one clean qubit model

Gibbs distribution 

parameterized by 𝐴

Definition of the corresponding 

matrix 𝐻 associated to a Hamiltonian

𝐻 = −
1

𝛽
෍

𝑖,𝑗=1,1

𝑁

𝐴𝑖,𝑗𝑈(𝑖,𝑗)

(Linear combination of unitary operators, 
which is generally not unitary)

Block encoding of 𝐻

𝑈𝐻 =
𝐻 ∗
∗ ∗

(Definition of a unitary operator encoding 
𝐻 with the use of ancillary qubits)

Quantum walk operator 𝑊𝐻 defined from 

𝑈𝐻 such that :

𝑊𝐻
𝑘 ⇔ 𝑇𝑘 𝐻

𝑁 variables problem

Requires 𝑀 = log2(𝐿) ancillary qubits with 
𝐿 the number of non-zero terms of 𝐴

Encoded on 𝑁 qubits
with 𝑈(𝑖,𝑗) of size 2𝑛 × 2𝑛

Unitary operator acting on 𝑁 +𝑀 + 1 qubits

𝑆𝐾 = 𝐼0 𝛽 𝐼𝑁𝑒
𝛽 + 2෍

𝑘=1

𝐾

−1 𝑘𝐼𝑘 𝛽 𝑇𝑘(𝐻)
with 𝐼𝑘 𝛽 the modified Bessel function of the 1𝑠𝑡 kind

with 𝑇𝑘(𝐻) the 𝑘𝑡ℎ Chebyshev polynomial of the 1𝑠𝑡 order 

There exists a general method for 

defining 𝑻𝒌(𝑯) as a unitary operator !

≈ 𝐼0 𝛽 2𝑁𝑒𝛽 + 2෍
𝑘=1

𝐾

−1 𝑘𝐼𝑘 𝛽 𝜙𝑘𝑍 = ෍

𝑥∈ 0,1 𝑁

exp 𝑥𝐶
𝑇A𝑥𝐶 = Tr 𝑒−𝛽𝐻 ≈ Tr 𝑆𝐾 = 𝐼0 𝛽 2𝑁𝑒𝛽 + 2෍

𝑘=1

𝐾

−1 𝑘𝐼𝑘 𝛽 𝑇𝑟(𝑇𝑘 𝐻 )
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3. Quantum approach for partition function estimation

Precision metrics

 Accuracy of the estimation depending on two parameters :

First results

 Simple graphs, due to the limited power of computation 

available in current quantum hardwares

 Results analysis : (simulated results)

– The number of samples 𝑸 significantly impacts the accuracy of the estimation

– As 𝐼𝑘(𝛽) decreases exponentially for 𝑘 increasing, 𝑲 can be set at low values

without significantly impacting the accuracy of the estimation

– The high current error rate of quantum hardwares requires to significantly increases

the number of executions required to obtain a satisfying precision.

𝑍 = Tr 𝑒−𝛽𝐻 ≈ Tr 𝑆𝐾 = 𝐼0 𝛽 2𝑁𝑒𝛽 + 2෍
𝑘=1

𝐾

−1 𝑘𝐼𝑘 𝛽 𝑇𝑟(𝑇𝑘 𝐻 ) ≈ 𝐼0 𝛽 2𝑁𝑒𝛽 + 2෍
𝑘=1

𝐾

−1 𝑘𝐼𝑘 𝛽 𝜙𝑘

Precision proportional to 𝑲
i.e. the degree of 

Chebyshev approximation

Precision proportional 
to the number of 

samples 𝑸

Re(Tr 𝑈 ) = 𝑝0 −
1

2
2𝑁+1

Average precision for 𝐾 = 3 and 𝛿 = 0,1

Average precision for 𝑄 = 105 et 𝛿 = 0,1
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4. Conclusion

Contributions

 We propose a quantum approach for speeding up and improving the 

learning of a mixed graphical model 

– We introduce a general method for encoding a Gibbs distribution as a linear 

combination of unitary operators 𝐻

– From this linear combination of unitary operators, we define a quantum walk 

operator 𝑾𝑯 that is evaluated with the one-clean qubit model algorithm to 

obtain an estimation of the partition function of any Gibbs distribution.

– Our approach enables the computation of all the partial derivates 
𝜕 𝑙𝑛(𝑍𝛺)

𝜕𝛺

required to update the gradient of the log-likelihood required at each step of 

the model learning.

Further work:

 Result analysis for the computation of 
𝜕 𝑙𝑛(𝑍𝛺)

𝜕𝛺

 Study of the current limitations of state-of-the-art methods

– Estimation of the conditions for quantum advantage
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