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2. Problem presentation

Airborne radar built-in test devices

 Data collection

– Radar systems are equipped with built-in test devices that collect functionning data

– Modern radar system functionning is characterized by up to 100.000 binary, discrete 

and continuous variables

– Once the radar is embedded, functionning data cannot be efficiently processed to 

detect anomalies

Anomaly detection at the end of the production chain

 Enables to detect radar teething problems before its embedding

– Advanced analysis of the functionning data collected by the built-in test devices

 Probabilistic approach for anomaly detection in production chain

– Modelization of the functioning of the radar by a mixed graphical model

– Learning of a model corresponding to the good functionning of the system

– Enables the localization of the components source of anomalies by computing the 

likelihood of new acquisition files for the learned model
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3. Problem formulation

 Gibbs distribution associated to the MRF:

𝑝Ω 𝑥𝐶 , 𝑥𝑄 =
𝑔Ω 𝑥𝐶 , 𝑥𝑄

𝑍Ω

𝑤𝑖𝑡ℎ 𝑔Ω 𝑥𝑐, 𝑥𝑄 = exp 𝑥𝐶
𝑇Θ𝑥𝐶 + 𝜇𝑇𝑥𝑄 −

1

2
𝑥𝑄
𝑇Δ𝑥𝑄 + 𝑥𝑐

𝑇Φ𝑥𝑄

𝑎𝑛𝑑 𝑍Ω =
𝑥𝐶∈ 0,1 𝑁

exp(𝑥𝐶
𝑇Θ𝑥𝐶)න

ℝ𝑀
exp(𝜇𝑇𝑥𝑄 −

1

2
𝑥𝑄
𝑇Δ𝑥𝑄 + 𝑥𝑐

𝑇Φ𝑥𝑄) 𝑑𝑥𝑄

 Objective :

– Learning the values of 𝛀 = 𝜣, 𝝁, 𝚫,𝜱 corresponding to a good functionning radar 

through a process of gradient descent

 Limitation encountered in previous works:

– Each learning step requires to update the log-likelihood gradient: 
𝜕 ln(𝑝Ω)

𝜕Ω
=

𝜕 ln(𝑔Ω)

𝜕Ω
−

𝜕 ln(𝑍Ω)

𝜕Ω

–
𝜕 ln(𝑍Ω)

𝜕Ω
=

1

𝑍𝛺

𝜕𝑍𝛺

𝜕𝛺
non-trivial (requires to compute 2𝑁 + 264 𝑀 values for each parameters of 𝛺)

– Approximations employed in previous work (stochastic gradient approximation, etc…) 

considerably reduce the accuracy of the model learning.

with 𝑥𝐶 ∈ 0,1 𝑁 the categorical variables (binary and discrete binarized) 
with 𝑥𝑄 ∈ ℝ

𝑀 the quantitative variables (continuous)

with Ω = {Θ, 𝜇, Δ, Φ} the model parameters

Idea
 

Take advantage of quantum 

computing to improve and speed-

up the computation of 
𝜕 ln(𝑍Ω)

𝜕Ω
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3. Problem formulation

 Considering that quantitative variables 𝒙𝑸 follow a Gaussian distribution, 

straightforward calculations lead to :

𝑍Ω = 2𝜋
𝑀
2 Σ

1
2 exp(

1

2
𝜇𝑇Σ𝜇) 

𝑥∈ 0,1 𝑁

exp(𝑥𝐶
𝑇Ψ𝑥𝐶)

𝑤𝑖𝑡ℎ Ψ = Θ +
1

2
ΦΣΦ𝑇 + 𝑑𝑖𝑎𝑔 ΦΣ𝜇 𝑠𝑦𝑚𝑒𝑡𝑟𝑖𝑐 𝑎𝑛𝑑 Σ = Δ−1

 Objective :

– Develop a quantum approach to compute σ𝑥∈ 0,1 𝑁 exp(𝑥𝐶
𝑇𝐴𝑥𝐶) for any matrix 𝐴

– Can be used to speed up the computation of each 
𝝏𝒁𝜴

𝝏𝜴𝒊
for 𝛀𝒊 ∈ 𝛀 = 𝜣, 𝝁, 𝜟,𝜱

 One-clean qubit model

– Quantum algorithm designed to estimate the trace of a unitary operator

– For 𝑈 the 2𝑁 × 2𝑁 matrix associated to a unitary operator (a quantum gate) acting on 𝑁

qubits, 𝐑𝐞(𝐓𝐫 𝑼 ) can be deduced from the probability of measuring 𝟎 on an ancillary qubit

Re(Tr 𝑈 ) = 𝑝0 −
1

2
2𝑁+1

Hadamard gates

Idea

Define a unitary 𝑈 such that 

Re(𝑇𝑟 𝑈 ) = σ𝑥∈ 0,1 𝑁 exp(𝑥𝐶
𝑇𝐴𝑥𝐶)

Maximally mixed state
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3. Quantum approach for partition function estimation

Linear Combination of Unitaries (LCU) method:

 Let’s consider a Gibbs distribution 𝑝 𝑥 = exp(𝑔(𝑥))/𝑍 with 𝑥𝐶 ∈ 0,1 𝑁 and 𝑔 𝑥𝐶 = exp(𝑥𝐶
𝑇𝐴𝑥𝐶)

– 𝐻 is defined from the coefficients 𝐴𝑖,𝑗 of 𝑔(𝑥) such that

𝐻 =
−1

𝛽


𝑖,𝑗=1,1

𝑁

𝐴𝑖,𝑗𝑈(𝑖,𝑗) 𝑤𝑖𝑡ℎ 𝛽 =
𝑖,𝑗=1,1

𝑁

|𝐴𝑖,𝑗|

– with 𝑈(𝑖,𝑗) diagonal unitary matrices of size 2𝑁 × 2𝑁 such that:

𝑈(𝑖,𝑗) = 𝐼(1)⊗⋯⊗𝐵(𝑖)⊗⋯⊗𝐵(𝑗)⊗⋯⊗ 𝐼(𝑁)

– with 𝐵 =
0 0
0 1

, 𝐼 =
1 0
0 1

and 𝐵(𝑖) corresponding to the application of the operator 𝑩 to qubit 𝒊

 With this construction, we have Tr 𝑒−𝛽𝐻 = σ
𝑥∈ 0,1 𝑁 exp 𝑥𝐶

𝑇𝐴𝑥𝐶 = σ
𝑥∈ 0,1 𝑁 𝑔(𝑥𝐶) = 𝑍

Intuition : Compute straightforwardly 𝑻𝒓(𝒆−𝜷𝑯) with the one-clean qubit model

Problem : It is not straightforward to define 𝐔 = 𝒆−𝜷𝑯

 Chebyshev approximation of 𝒆−𝜷𝑯: 𝑆𝐾 = 𝐼0 𝛽 𝐼𝑁𝑒
𝛽 + 2

𝑘=1

𝐾

−1 𝑘𝐼𝑘 𝛽 𝑇𝑘(𝐻)
with 𝐼𝑘 𝛽 the modified Bessel function of the 1𝑠𝑡 kind

with 𝑇𝑘(𝐻) the 𝑘𝑡ℎ Chebyshev polynomial of the 1𝑠𝑡 order 
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3. Quantum approach for partition function estimation

Estimation of 𝐓𝐫 𝑺𝑲

 We have 𝑻𝒓 𝑺𝑲 = 𝐼0 𝛽 2𝑛𝑒𝛽 + 2σ𝑘=1
𝐾 −1 𝑘𝐼𝑘 𝛽 𝑻𝒓(𝑻𝒌 𝑯 )

– Goal : Compute 𝑇𝑟(𝑇𝑘 𝐻 ) with the one-clean qubit model

– Requires to define a unitary operator encoding 𝑇𝑘(𝐻)

 Quantum walk operator 𝑾𝑯 :

 Computation of an estimation 𝝓𝒌 of 𝑻𝒓( 𝑾𝑯
𝒌) with the one clean qubit model

Gibbs distribution 

parameterized by 𝐴

Definition of the corresponding 

matrix 𝐻 associated to a Hamiltonian

𝐻 = −
1

𝛽


𝑖,𝑗=1,1

𝑁

𝐴𝑖,𝑗𝑈(𝑖,𝑗)

(Linear combination of unitary operators, 
which is generally not unitary)

Block encoding of 𝐻

𝑈𝐻 =
𝐻 ∗
∗ ∗

(Definition of a unitary operator encoding 
𝐻 with the use of ancillary qubits)

Quantum walk operator 𝑊𝐻 defined from 

𝑈𝐻 such that :

𝑊𝐻
𝑘 ⇔ 𝑇𝑘 𝐻

𝑁 variables problem

Requires 𝑀 = log2(𝐿) ancillary qubits with 
𝐿 the number of non-zero terms of 𝐴

Encoded on 𝑁 qubits
with 𝑈(𝑖,𝑗) of size 2𝑛 × 2𝑛

Unitary operator acting on 𝑁 +𝑀 + 1 qubits

𝑆𝐾 = 𝐼0 𝛽 𝐼𝑁𝑒
𝛽 + 2

𝑘=1

𝐾

−1 𝑘𝐼𝑘 𝛽 𝑇𝑘(𝐻)
with 𝐼𝑘 𝛽 the modified Bessel function of the 1𝑠𝑡 kind

with 𝑇𝑘(𝐻) the 𝑘𝑡ℎ Chebyshev polynomial of the 1𝑠𝑡 order 

There exists a general method for 

defining 𝑻𝒌(𝑯) as a unitary operator !

≈ 𝐼0 𝛽 2𝑁𝑒𝛽 + 2
𝑘=1

𝐾

−1 𝑘𝐼𝑘 𝛽 𝜙𝑘𝑍 = 

𝑥∈ 0,1 𝑁

exp 𝑥𝐶
𝑇A𝑥𝐶 = Tr 𝑒−𝛽𝐻 ≈ Tr 𝑆𝐾 = 𝐼0 𝛽 2𝑁𝑒𝛽 + 2

𝑘=1

𝐾

−1 𝑘𝐼𝑘 𝛽 𝑇𝑟(𝑇𝑘 𝐻 )
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3. Quantum approach for partition function estimation

Precision metrics

 Accuracy of the estimation depending on two parameters :

First results

 Simple graphs, due to the limited power of computation 

available in current quantum hardwares

 Results analysis : (simulated results)

– The number of samples 𝑸 significantly impacts the accuracy of the estimation

– As 𝐼𝑘(𝛽) decreases exponentially for 𝑘 increasing, 𝑲 can be set at low values

without significantly impacting the accuracy of the estimation

– The high current error rate of quantum hardwares requires to significantly increases

the number of executions required to obtain a satisfying precision.

𝑍 = Tr 𝑒−𝛽𝐻 ≈ Tr 𝑆𝐾 = 𝐼0 𝛽 2𝑁𝑒𝛽 + 2
𝑘=1

𝐾

−1 𝑘𝐼𝑘 𝛽 𝑇𝑟(𝑇𝑘 𝐻 ) ≈ 𝐼0 𝛽 2𝑁𝑒𝛽 + 2
𝑘=1

𝐾

−1 𝑘𝐼𝑘 𝛽 𝜙𝑘

Precision proportional to 𝑲
i.e. the degree of 

Chebyshev approximation

Precision proportional 
to the number of 

samples 𝑸

Re(Tr 𝑈 ) = 𝑝0 −
1

2
2𝑁+1

Average precision for 𝐾 = 3 and 𝛿 = 0,1

Average precision for 𝑄 = 105 et 𝛿 = 0,1
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4. Conclusion

Contributions

 We propose a quantum approach for speeding up and improving the 

learning of a mixed graphical model 

– We introduce a general method for encoding a Gibbs distribution as a linear 

combination of unitary operators 𝐻

– From this linear combination of unitary operators, we define a quantum walk 

operator 𝑾𝑯 that is evaluated with the one-clean qubit model algorithm to 

obtain an estimation of the partition function of any Gibbs distribution.

– Our approach enables the computation of all the partial derivates 
𝜕 𝑙𝑛(𝑍𝛺)

𝜕𝛺

required to update the gradient of the log-likelihood required at each step of 

the model learning.

Further work:

 Result analysis for the computation of 
𝜕 𝑙𝑛(𝑍𝛺)

𝜕𝛺

 Study of the current limitations of state-of-the-art methods

– Estimation of the conditions for quantum advantage
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