Set

Quantum Computing for Partition Function Estimation of a Markov Random Field in a Radar Anomaly Detection Problem

Timothé PRESLES Cyrille ENDERLI Gilles BUREL El-Houssaïn BAGHIOUS

www.thalesgroup.com

2. Problem presentation

> Airborne radar built-in test devices

- Data collection
 - Radar systems are equipped with **built-in test devices** that collect functionning data
 - Modern radar system functionning is characterized by up to 100.000 binary, discrete and continuous variables
 - Once the radar is embedded, functionning data <u>cannot be efficiently processed</u> to detect anomalies

> Anomaly detection at the end of the production chain

- Enables to detect radar teething problems <u>before its embedding</u>
 - Advanced analysis of the functionning data collected by the built-in test devices
- Probabilistic approach for anomaly detection in production chain
 - Modelization of the functioning of the radar by a **mixed graphical model**
 - <u>Learning of a model</u> corresponding to the good functionning of the system
 - Enables the localization of the components source of anomalies by <u>computing the</u> <u>likelihood of new acquisition files</u> for the learned model

Figure 2.2: Structure of a mixed graphical model. The model has four binary variables x_1, x_2, x_3 and x_4 , represented by the brawn nodes with numbers 1 to 4, and three quantitative variables x_5, x_6 and x_7 , represented by the grey nodes with number 5, 6 and 7.

THALES Building a future we can all trust

{OPEN}

3. Problem formulation

• Gibbs distribution associated to the MRF:

with $x_c \in \{0,1\}^N$ the categorical variables (binary and discrete binarized) with $x_Q \in \mathbb{R}^M$ the quantitative variables (continuous) with $\Omega = \{\Theta, \mu, \Delta, \Phi\}$ the model parameters

- Objective :
 - Learning the values of $\Omega = \{\Theta, \mu, \Delta, \Phi\}$ corresponding to a good functionning radar through a process of gradient descent
- Limitation encountered in previous works:
 - Each learning step requires to **update the log-likelihood gradient**: $\frac{\partial \ln(p_{\Omega})}{\partial \Omega} = \frac{\partial \ln(g_{\Omega})}{\partial \Omega} \frac{\partial \ln(Z_{\Omega})}{\partial \Omega}$
 - $-\frac{\partial \ln(Z_{\Omega})}{\partial \Omega} = \frac{1}{Z_{\Omega}} \frac{\partial Z_{\Omega}}{\partial \Omega}$ non-trivial (requires to compute 2^N + (2⁶⁴)^M values for each parameters of Ω)
 - Approximations employed in previous work (stochastic gradient approximation, etc...)
 considerably reduce the accuracy of the model learning.

3. Problem formulation

• Considering that quantitative variables x_q follow a Gaussian distribution, straightforward calculations lead to :

$$Z_{\Omega} = (2\pi)^{\frac{M}{2}} |\Sigma|^{\frac{1}{2}} \exp(\frac{1}{2}\mu^{T}\Sigma\mu) \sum_{x \in \{0,1\}^{N}} \exp(x_{C}^{T}\Psi x_{C})$$

with $\Psi = \Theta + \frac{1}{2}\Phi\Sigma\Phi^{T} + diag(\Phi\Sigma\mu)$ symetric and $\Sigma = \Delta^{-1}$

Fig. 1. Circuit for estimating $\operatorname{Re}(\operatorname{Tr}(U))/2^N$ in the one clean qubit model.

- Develop a quantum approach to compute $\sum_{x \in \{0,1\}^N} \exp(x_C^T A x_C)$ for any matrix A
- Can be used to speed up the computation of each $\frac{\partial Z_{\Omega}}{\partial \Omega_i}$ for $\Omega_i \in \Omega = \{\Theta, \mu, \Delta, \Phi\}$

One-clean qubit model

- Quantum algorithm designed to estimate the trace of a unitary operator
- For U the $2^N \times 2^N$ matrix associated to a unitary operator (a quantum gate) acting on N qubits, $\operatorname{Re}(\operatorname{Tr}(U))$ can be deduced from the probability of measuring 0 on an ancillary qubit

$$\operatorname{Re}(\operatorname{Tr}(U)) = \left(p_0 - \frac{1}{2}\right) 2^{N+1}$$

Idea Define a unitary U such that $\operatorname{Re}(Tr(U)) = \sum_{x \in \{0,1\}^N} \exp(x_C^T A x_C)$

{OPEN}

3. Quantum approach for partition function estimation

> Linear Combination of Unitaries (LCU) method:

- Let's consider a Gibbs distribution $p(x) = \exp(g(x))/Z$ with $x_C \in \{0,1\}^N$ and $g(x_C) = \exp(x_C^T A x_C)$
 - H is defined from the coefficients $A_{i,j}$ of g(x) such that

$$H = \frac{-1}{\beta} \sum_{i,j=1,1}^{N} A_{i,j} U_{(i,j)} \text{ with } \beta = \sum_{i,j=1,1}^{N} |A_{i,j}|$$

- with $U_{(i,j)}$ diagonal unitary matrices of size $2^N \times 2^N$ such that:

$$U_{(i,j)} = I^{(1)} \otimes \cdots \otimes B^{(i)} \otimes \cdots \otimes B^{(j)} \otimes \cdots \otimes I^{(N)}$$

- with $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B^{(i)}$ corresponding to the **application of the operator** *B* **to qubit** *i*

• With this construction, we have $\operatorname{Tr}(e^{-\beta H}) = \sum_{x \in \{0,1\}^N} \exp(x_C^T A x_C) = \sum_{x \in \{0,1\}^N} g(x_C) = Z$

Intuition : Compute straightforwardly $Tr(e^{-\beta H})$ with the one-clean qubit model Problem : It is not straightforward to define $U = e^{-\beta H}$

• Chebyshev approximation of $e^{-\beta H}$: $S_K = I_0(\beta)I_N e^{\beta} + 2\sum_{k=1}^{K} (-1)^k I_k(\beta)T_k(H)$ with $I_k(\beta)$ the modified Bessel function of the 1st kind with $T_k(H)$ the kth Chebyshev polynomial of the 1st order

3. Quantum approach for partition function estimation

> Estimation of $Tr(S_K)$

- We have $Tr(S_K) = I_0(\beta)2^n e^{\beta} + 2\sum_{k=1}^{K} (-1)^k I_k(\beta) Tr(T_k(H))$ -
 - **Goal**: Compute $Tr(T_k(H))$ with the one-clean qubit model
 - Requires to define a unitary operator encoding $T_k(H)$
- Quantum walk operator W_H :

$S_{K} = I_{0}(\beta)I_{N}e^{\beta} + 2\sum_{k=1}^{K} (-1)^{k}I_{k}(\beta)T_{k}(H) \quad \text{with } I_{k}(\beta) \text{ the modified Bessel function of the } 1^{st} \text{ kind} \\ \text{with } T_{k}(H) \text{ the } k^{th} \text{ Chebyshev polynomial of the } 1^{st} \text{ order}$

There exists a general method for defining $T_k(H)$ as a unitary operator !

• Computation of an estimation ϕ_k of $Tr((W_H)^k)$ with the one clean qubit model

$$Z = \sum_{x \in \{0,1\}^N} \exp(x_C^T A x_C) = \operatorname{Tr}(e^{-\beta H}) \approx \operatorname{Tr}(S_K) = I_0(\beta) 2^N e^\beta + 2 \sum_{k=1}^K (-1)^k I_k(\beta) Tr(T_k(H)) \approx I_0(\beta) 2^N e^\beta + 2 \sum_{k=1}^K (-1)^k I_k(\beta) \phi_k$$

REF xxxxxxxxx rev xxx – date Name of the company / Template: 87211168-COM-GRP-FR-007 Ce document ne peut être reproduit, modifié, adapté, publié, traduit, de quelque manière que ce soit, en tout ou en partie, ou divulgué à un tiers sans l'accord écrit préalable de Thales © 2024 THALES. Tous droits réservés.

3. Quantum approach for partition function estimation

> Precision metrics

Accuracy of the estimation depending on two parameters :

$$Z = \operatorname{Tr}(e^{-\beta H}) \approx \operatorname{Tr}(S_{K}) = I_{0}(\beta)2^{N}e^{\beta} + 2\sum_{k=1}^{K} (-1)^{k}I_{k}(\beta)Tr(T_{k}(H)) \approx I_{0}(\beta)2^{N}e^{\beta} + 2\sum_{k=1}^{K} (-1)^{k}I_{k}(\beta)\phi_{k}$$

$$Precision proportional to K$$
i.e. the degree of
Chebyshev approximation
$$Precision proportional to K$$

$$Re(\operatorname{Tr}(U)) = \left(p_{0} - \frac{1}{2}\right)2^{N+1}$$

> First results

- Simple graphs, due to the limited power of computation available in current quantum hardwares
- Results analysis : (simulated results)
 - The number of samples *Q* significantly impacts the accuracy of the estimation
 - As $I_k(\beta)$ decreases exponentially for k increasing, K can be set at low values without significantly impacting the accuracy of the estimation
 - The high current error rate of quantum hardwares requires to significantly increases the number of executions required to obtain a satisfying precision.

Variation of the estimation error for different values of Q								
Nb. var	Q							
N	10 ³	104	10 ⁵	106	107			
2	48.90%	5.82%	1.49%	0.80%	0.47%			
3	68.56%	7.34%	2.48%	1.16%	0.72%			
4	97.85%	9.17%	3.66%	1.59%	1.39%			

Average precision for K = 3 and $\delta = 0,1$

Variation of the estimation error for different values of K								
Nb. var	K							
N	1	2	3	4	5			
2	9.98%	3.41%	1.49%	1.49%	1.49%			
3	17.91%	4.64%	2.48%	2.47%	2.47%			
4	33.57%	8.16%	3.66%	3.65%	3.65%			

Average precision for $Q = 10^5$ et $\delta = 0,1$

4. Conclusion

> Contributions

- We propose a quantum approach for speeding up and improving the learning of a mixed graphical model
 - We introduce a general method for encoding a Gibbs distribution as a linear combination of unitary operators H
 - From this linear combination of unitary operators, we define a **quantum walk** operator W_H that is evaluated with the one-clean qubit model algorithm to obtain an estimation of the partition function of any Gibbs distribution.
 - Our approach enables the computation of all the partial derivates $\frac{\partial \ln(Z_{\Omega})}{\partial \Omega}$ required to update the gradient of the log-likelihood required at each step of the model learning.

> Further work:

- Result analysis for the computation of $\frac{\partial \ln(Z_{\Omega})}{\partial \Omega}$
- Study of the current limitations of state-of-the-art methods
 - Estimation of the conditions for quantum advantage

{OPEN}