

Large-scale Quantum Circuit Emulation with MIMIQ

Guido Masella

CTO & Co-founder, QPerfect SAS

Overview

- Introduction to emulation: MPS and MIMIQ.
- Real-World Application.
- Pushing the Limits: QEC.
- From simulation to execution.

Emulating quantum systems

Why emulation?

Design, benchmark and optimize
quantum algorithms and quantum
hardware

For a system of N qubits

$|\psi\rangle \longrightarrow 2^N$ Complex Numbers

On a classical computer

- State Vector Emulators
 - + High accuracy, many operations
 - Low number of Qubits
- Clifford Emulators
 - + High number of qubits
 - Restricted gate set
- Matrix Product States
 - + High number of qubits
 - Expressivity (e.g. low entanglement)

Tensor Networks idea

Useful resource: <https://tensornetworks.org>

Compress entanglement between subsystems

$$|\psi\rangle = \sum_{i=0}^{\chi} \boxed{|A_i\rangle} \text{---} \boxed{|B_i\rangle}$$

Reduce the number of terms in the sum

$$|\psi\rangle = \sum_{\substack{n_1, n_2, \\ n_3, n_4}} \underbrace{\sum_{i,j,k} A_i^{n_1} A_{ij}^{n_2} A_{jk}^{n_3} A_k^{n_4}}_{\text{Matrix Product}} |n_1 n_2 n_3 n_4\rangle$$

Restrict size of A matrices
→ Compressed representation

Singular Value Decomposition

MPS can be constructed using Singular Value Decompositions

$$A = USV^\dagger$$

↑
Diagonal
Singular Values

Truncation:
Keep only largest singular values

Strasbourg Cathedral

Original

50% compressed

95% compressed

Quantum Circuit Emulator
by QPerfect

- Optimized for speed, scale and accuracy
- Easy to use
- Professional features for cutting-edge research

Benchmarking Large Scale Emulators

Leonteva et al., ACM Transactions in Quantum Computing (2025)

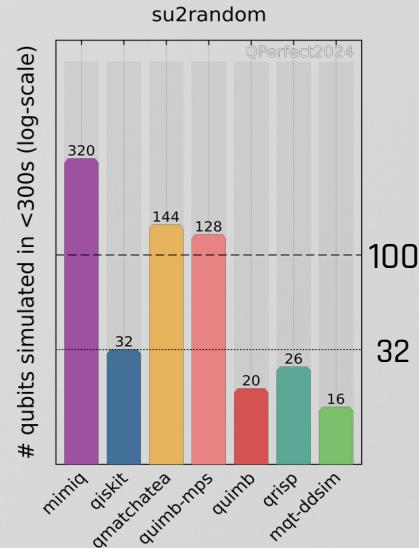
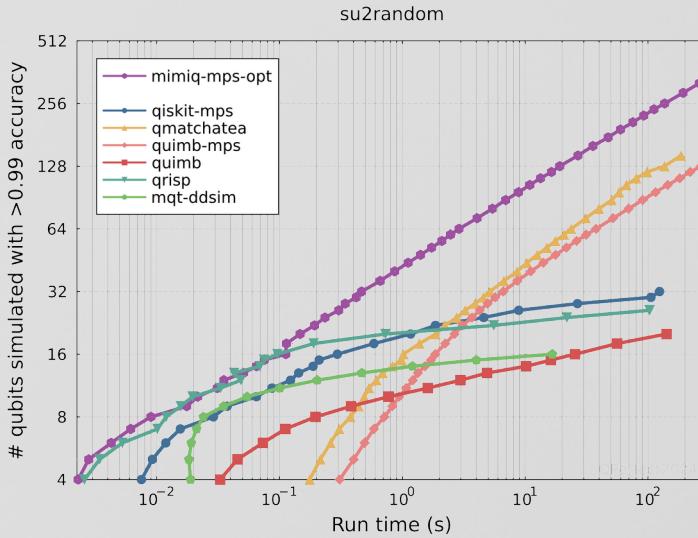
1) Algorithm selection

- 28 quantum algorithms
- 14 scalable up to 1024 qubits
- OpenQASM format
- Transpiled to a minimal gate set (u, cx)

2) Emulator selection

CPU only (for now)

3) Performance metrics



Scale : maximum number of qubits with fidelity >0.99 within 300 seconds

Accuracy: mirror circuit fidelity
[Nature Phys. 18, 75–79 (2022)]

Speed : minimum time to execute the circuit, including import and sampling

Benchmarking Large Scale Emulators

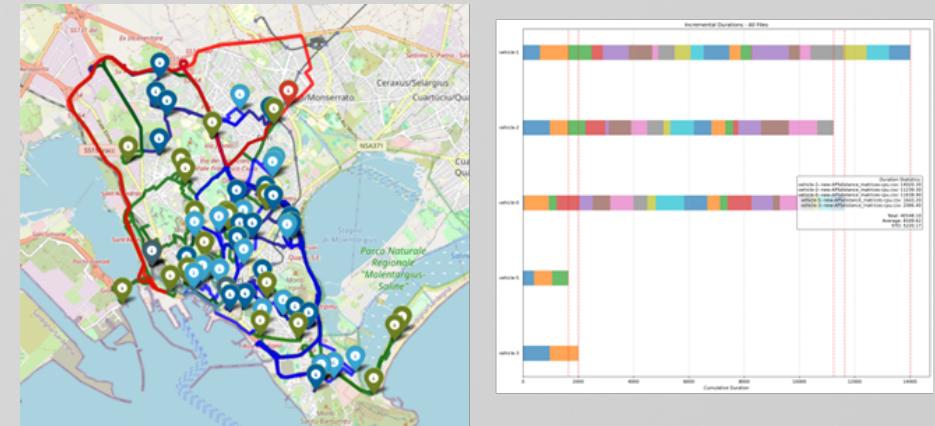
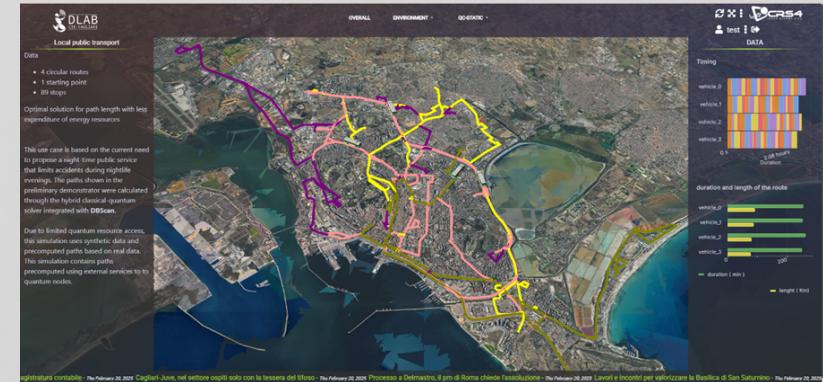
Leonteva et al., ACM Transactions in Quantum Computing (2025)

Key takeaways

- MPS Algorithms outperform others
- Most benchmarking algorithm scale polynomially for MPS

Elo ranking system: measure the performance of quantum computing systems across benchmarks

Algorithm	mimiq-mps	qiskit-mps	qmatchatea	quimb-mps	quimb	qrisp	mqt-dds
Elo Rating	1537 ± 17	1437 ± 41	1298 ± 43	1178 ± 28	981 ± 39	930 ± 52	989 ± 55



Use Case: Fleet Routing

As part of the Cagliari Digital Lab project, CRS4 is conducting R&D into **fleet routing**. NISQ algorithms solve the MD-VRP (Multi-Depot Vehicle Routing Problem) and its variants, taking into account **real-world constraints** and using **real traffic data**.

The digital QC approach involves decomposing the problem into two stages: first, clustering customers to depots; then, solving VRP or CVRP instances on a QPU.

MIMIQ is used for **extensive testing across a large number of customers** using **stratified datasets**, enabling statistical analysis to identify conditions in which quantum solutions are more effective than classical approaches.

The solvers will be integrated in the smart city operational control platform

Use Case: Secure Communications

BTQ is developing quantum algorithms for securing communications and digital transactions.

The application exploits quantum computations and quantum mechanical principles to secure communications without the need of a quantum channel.

MIMIQ is deployed to simulate these complex circuits, allowing BTQ to **verify the security guarantees** and **optimize the implementation strategy** to minimize the resources required for future digital quantum hardware.

Real-world applications
Digital Identity, Financial Transactions, Smart Contracts, Secure Communications, Decentralized Finance, Digital Right Management

Use Case: Hybrid Compute

Quobly is building a developer community to design and test applications before physical hardware is widespread.

The MIMIQ platform and its engines power QLEO, Quobly's user-facing emulator, and are integrated with the **NVIDIA CUDA-Q** stack.

Users leverage the **GPU-accelerated backend** to debug and optimize complex logical circuits in minutes rather than days.

Developers write standard **C++ and Python code** that runs on the emulator today and on QPUs tomorrow.

QLEO is available on OVHcloud

MIMIQ for Fault Tolerance

Collaboration with

Today QC have errors~0.1%

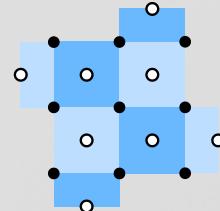
Quantinuum, arXiv:2406.02501

QuEra, Nature 622, 268–272 (2023)

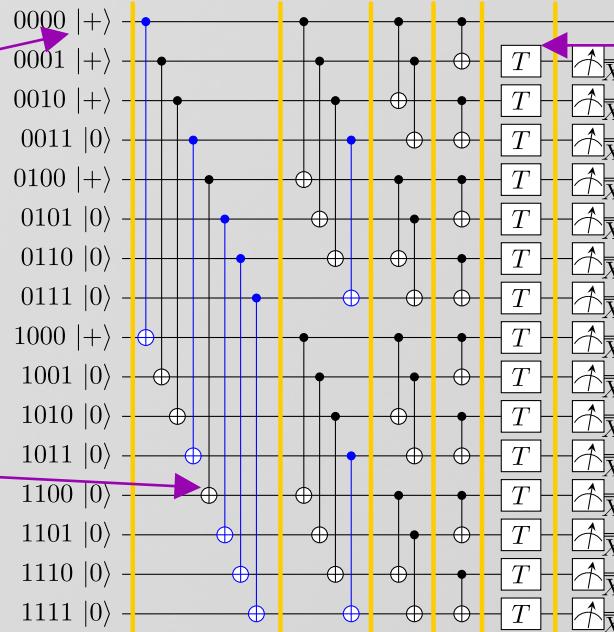
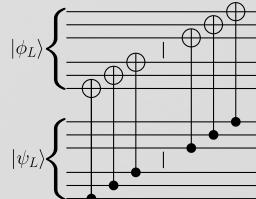
Needs 0.00000001%

Factoring 2048 bit RSA

Waintal, PNAS 121 (1) e2313269120 (2023)


- QEC code?
- Logical gate implementation?
- Hardware implementation?
- Decoder?
- ...

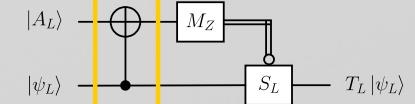
Can we simulate large scale
logical quantum
algorithms?



Magic State Distillation

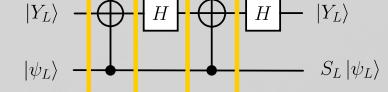
Collaboration with QuEra
Putting Quantum to Work

Rotated Surface Code

Logical CNOT



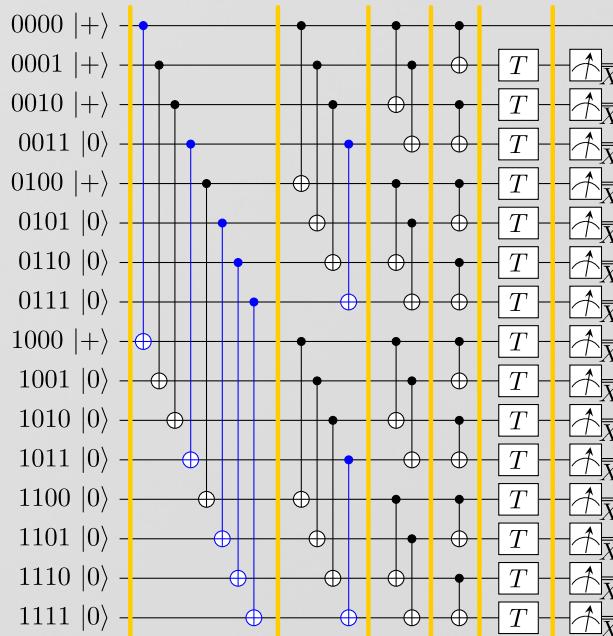
[Beverland, Kubica & Svore, PRX Quantum (2021)]


~~16 qubits, ~50 gates?~~

289 qubits, >30000 gates

Logical T

Logical S



Rounds of
QEC

Experimental Demonstration of Logical
Magic State Distillation
Nature 645, 620-625 (2025)
by Harvard and QuEra

MSD Optimizations

Collaboration with QuEra
Putting Quantum to Work

289 qubits, >30000 gates

- Ordering of physical qubits
×100 speedup
- Ordering of Physical Gates
×2 - ×10 speedup
- Ancillas and Ordering of Logical Gates
×2 - ×4 speedup
- Gate compression
- Tuning of MPS parameters

Runs with fidelity 1.0 on a single CPU

Qubits	Best
85	0.9 s
153	25 s
289	11 min

Solving the same hard problems

Optimizing Simulators

Qubit Ordering

Gate Ordering

Ancilla and logical gate placement

Optimizing Hardware Execution

Qubit Mapping

Gate Mapping

Architecture choice and resource allocation

BTQ

Cryptography

aQCeSS

Neutral Atoms

Quantum Logic Unit

QLU™

Bridging quantum advantage regime applications to early fault-tolerant quantum computers

- Compiling algorithms to efficient execution on neutral atom QPUs
- Incorporating industry-best gates for neutral atoms
- Application- and hardware-specific error correction with minimal overheads
- Cutting quantum resource requirements by orders of magnitude

Thank you for your attention!

Contact: guido.masella@qperfect.io

 Follow us