

Multi-Criteria Decision Aiding for Quantum Benchmarking

Christophe LABREUCHE cortAlx-Labs

www.thalesgroup.com

Quantum Benchmarking

- > Aim: assess the performance of implementations of quantum computers
- > Associated to KPIs (Key Performance Indicators)
- > Levels of benchmarking

Level	Scope	Example of KPIs
Component – level	hardware implementation of individual components	Gate fidelitychannel fidelity
System – level	hardware performance of entire implementations	quantum volumelayer fidelity
Application – level	 User perspective willing to solve a concrete problem willing to compare the performance on various hardware (QC, HPC,) 	Q-score

Examples of KPIs

> Simulation of Quantum Physical Models

- Q-Score Many-Body
- Many-Body Fidelity

> Optimization

- Q-Score of « Max-Cut »
- Q-Score of « Max-Clique »
- Max size of « Max Cardinality Matching »
- Accuracy indexed by noise level
- Compilation-dependant criteria
- Probability of obtaining the optimum
- Min case/Max case Gap wrt Optimum
- Size of problem in number of variables, number of Qbits to solve the problem, Class of problem addressed.

Linear systems Solving

- > Accuracy indexed by noise level
- > Compilation-dependant criteria
- Probability of solving the Problem, Number of variables and precision in Qbits.
- > Algorithm-dependant Energetic criteria

Factorization

- > Probability to factorize
- > Size in Qubit of the calculated number

Generic

- Computation Time
- Latency
- > Throughput

Multi-Criteria Decision Aiding for Quantum Benchmarking

>How to combine several KPIs in order to

- Assess globally each solution, or
- Compare several solutions to identify the most preferred one?

>Use of Multi-Criterion Decision Aiding (MCDA)

Solution (Quantum Computer): $\mathbf{x} = (x_1, ..., x_n)$

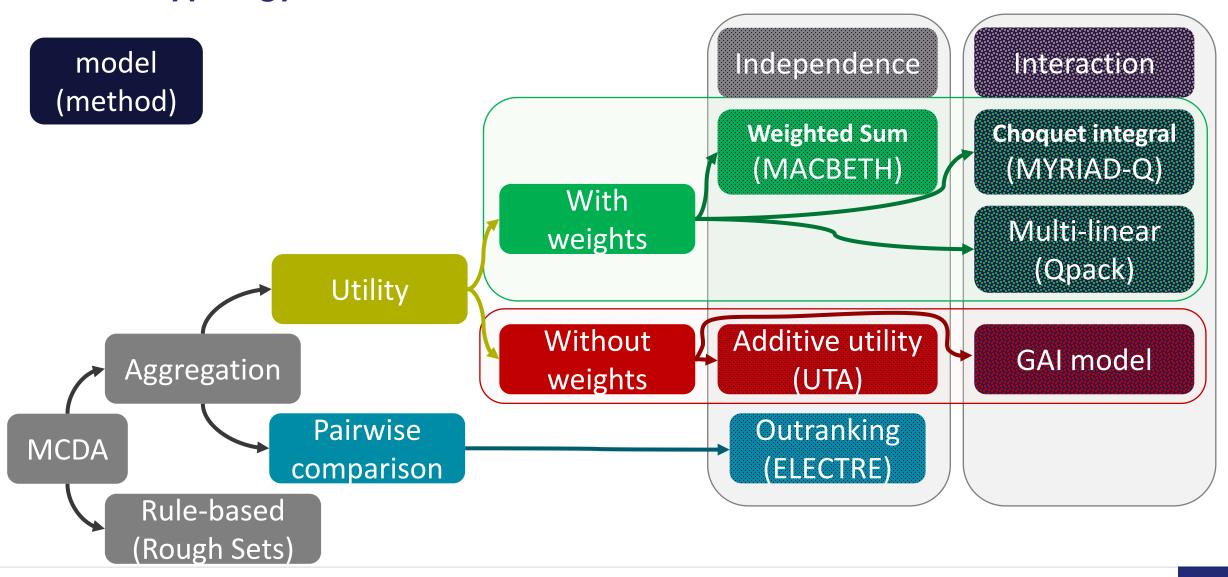
Values on the KPIs

We seek to construct the preference \geq of stakeholders on X

 $x \ge y$ if x is preferred to y

Notion of criterion

|||||||||||


Notion of « criterion »: there exists a preference \ge_i on KPI i s.t. $x_i \ge_i y_i$ if x_i is preferred to y_i on KPI i

	Q-Score MaxCut	Q-Score MaxClique	Largest size of MCM
	Maximize	Maximize	Maximize
X	145	40	25
y	70	20	10
	145 ≽ ₁ 70	40 ≽ ₂ 20	25 ≽ ₃ 10

MCDA typology

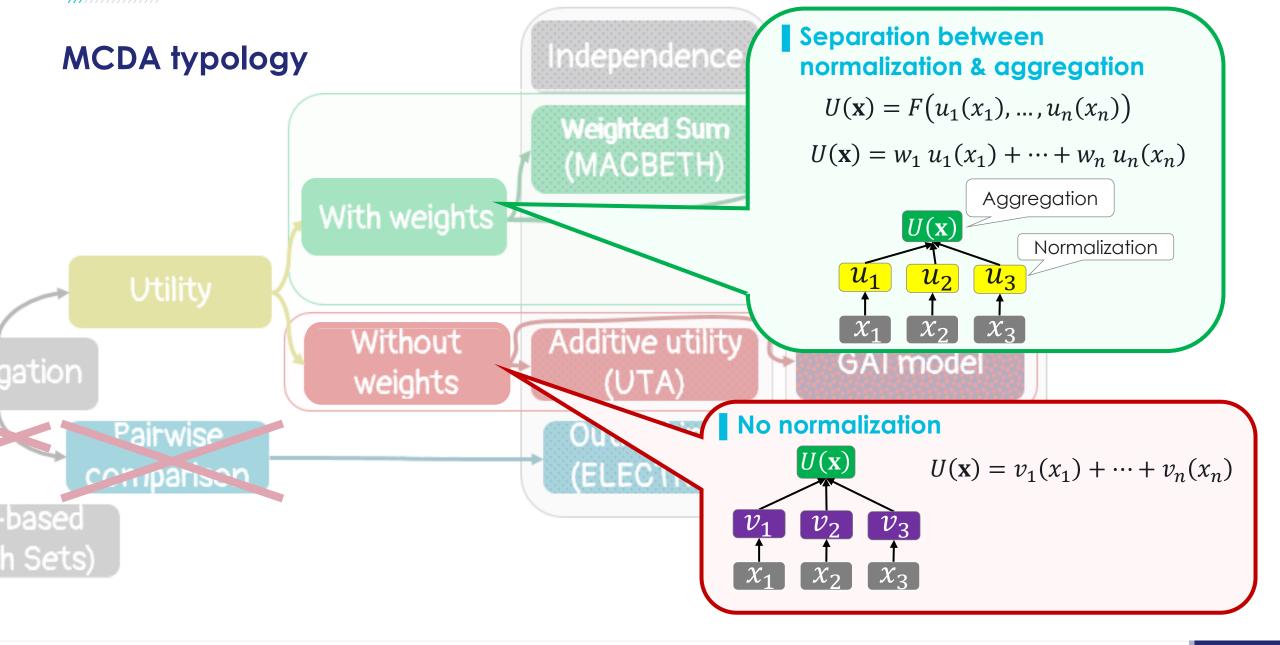
MCDA typology

|||||||||||

One can provide an overall assessment of each Quantum
Computer

Choice \mathbf{x} vs. \mathbf{y}_{Adg} $\mathbf{y} = (x_1, \dots, x_n)$ $\mathbf{y} = (y_1, \dots, y_n)$ $\mathbf{y} = (y_1, \dots, y_n)$ $\mathbf{x} = (x_1, \dots, x_n)$ $\mathbf{y} = (y_1, \dots, y_n)$ $\mathbf{x} = (x_1, \dots, x_n)$ $\mathbf{x} = (x$

ੜ੍ਹਾegation


-based

Rule-based (Rough Sets)

Not possible to provide an overall assessment of each Quantum

Pairwise

Normalization of the KPIs: type of scale of u_i

> Normalization u_i is not uniquely specified: "if u_i is admissible, then $\phi_i \circ u_i$ is also admissible"

Type of scale	Input preference data	Family of ϕ	Consequence
Ordinal Scale	• Examples of preference $x_i \ge_i y_i$	Any strictly increasing function ϕ_i	Too Weak!
Interval Scale	 Examples of preference x_i ≽_i y_i Intensity of preferences: [x_i → y_i] ∈ {very weak, , extreme} 	Any positive affine transformation $\phi_i(a) = \alpha_i \ a + \beta_i$	Perfect when normalization are combined arithmetically (weighted sum,)

Normalization of the KPIs: different assumptions on commensurateness

Complete commensurateness

Definition

- All ϕ_i are <u>similar</u> $\phi_1(a) = \cdots = \phi_n(a) = \alpha \ a + \beta$
- Introduce 2 reference levels:
 - \mathfrak{G}_k : Good level
 - \mathfrak{B}_k : Bad level

Illustration

Reference levels:

KPI	 ≇k	 ø _k
Q-Score Max cut	0	1000
Q-Score Max Clique	0	1000
Largest size of MCM	0	723

Weak commensurateness

Definition

- All ϕ_i are **similar** up to a dilation: $\phi_k(u_k) = \alpha_k u_k$
- Introduce 1 reference level:
 - \mathfrak{B}_k : Bad level

Illustration

- \$\mathbb{H}_k = 0\$ for many performance KPIs:
 - Q-Score
 - Largest size of MCM

No commensurateness

Definition

• The $u_i's$ can move independently on all KPIs:

$$\phi_1(a) = \alpha_1 a + \beta_1, ...,$$

$$\phi_n(a) = \alpha_n a + \beta_n$$

• No constraint among the ϕ_i 's

Illustration

No need for reference levels!

Normalization of the KPIs: different assumptions on commensurateness

Complete commensurateness

Definition

- All ϕ_i are **similar** $\phi_1(a) = \cdots = \phi_n(a) = \alpha \ a + \beta$
- Introduce 2 reference levels:
 - \mathfrak{G}_k : Good level
 - \mathfrak{B}_k : Bad level

Weak commensurateness

Definition

- All ϕ_i are <u>similar</u> up to a dilation: $\phi_k(u_k) = \alpha_k u_k$
- Introduce 1 reference level:
 - \mathfrak{B}_k : Bad level

No commensurateness

Definition

• The $u_i's$ can move independently on all KPIs:

$$\phi_1(a) = \alpha_1 a + \beta_1, ...,$$

$$\phi_n(a) = \alpha_n a + \beta_n$$

• No constraint among the ϕ_i 's

Invariance problem

Which aggregation function F is such that if " \mathbf{x} is preferred to \mathbf{y} " with utilities u_1, \dots, u_n , then " \mathbf{x} is also preferred to \mathbf{y} " with utilities $\phi_1 \circ u_1, \dots, \phi_n \circ u_n$?

Consequence on F

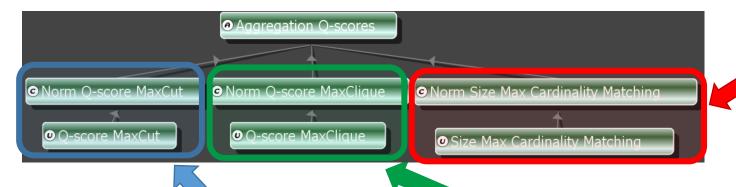
 Many F are OK: weighted sum, Choquet integral, multilinear model,...

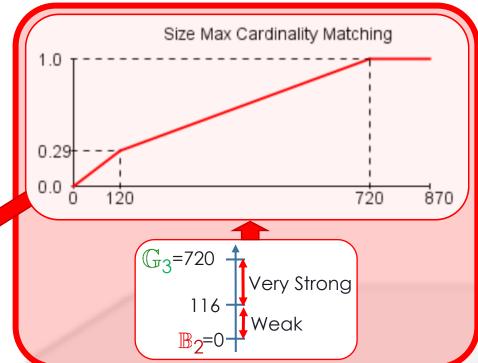
Consequence on F

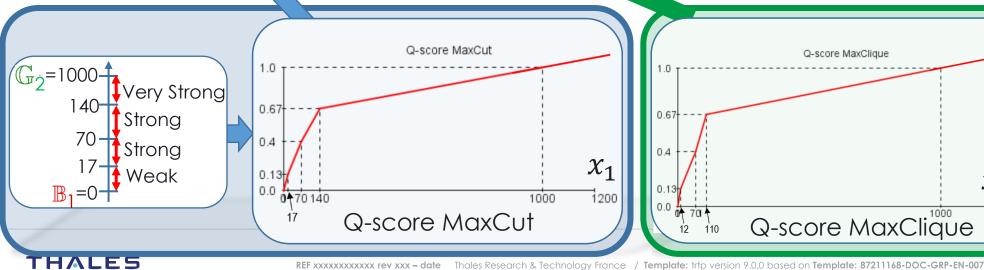
• Only one model:

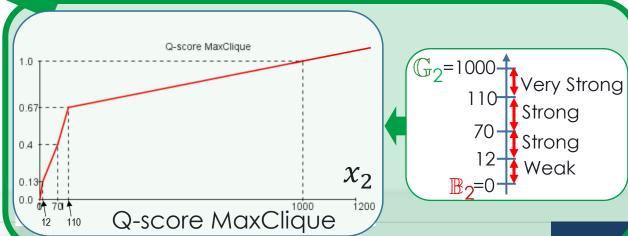
$$F(\mathbf{u}) = f(u_1^{w_1} \times \dots \times u_n^{w_n})$$

Consequence on F

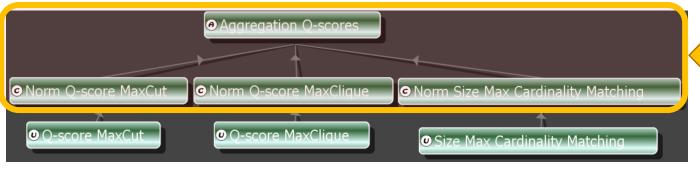

• There is no F!

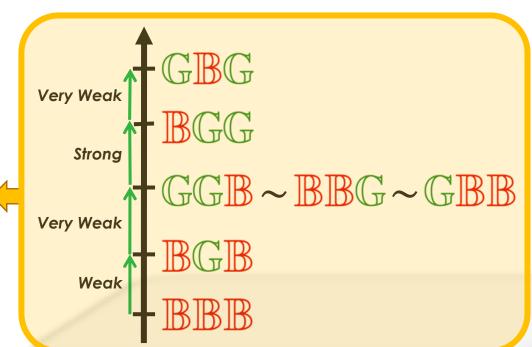


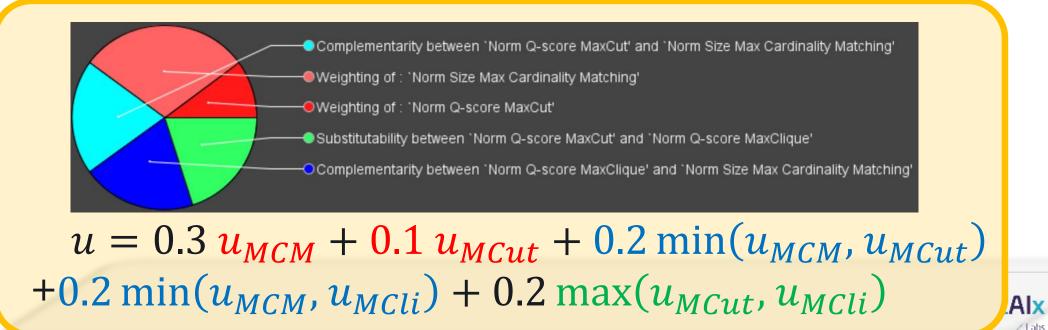



Elicitation with MYRIAD-Q

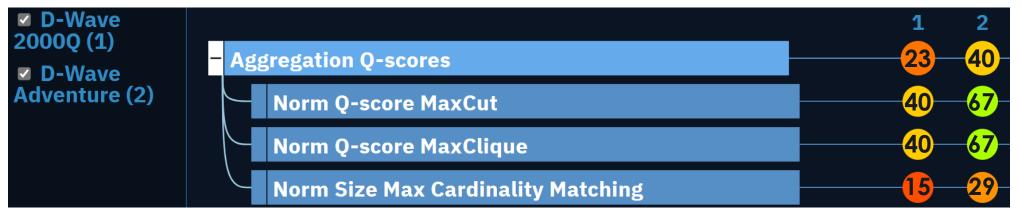

|||||||||||

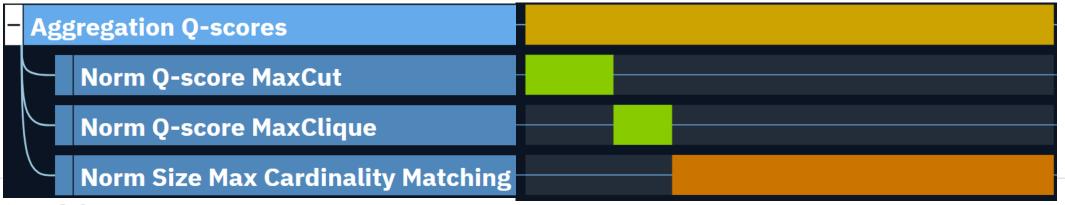






Elicitation with MYRIAD-Q





Output of MCDA

	Q-score MaxCut	Q-score MaxClique	Max size MaxCardMatching
D-Wave 2000Q	70	70	61
D-Wave Advantage	140	110	116

☐ Explanation of D-Wave Advantage in comparison to the best possible alternative

Take-away

|||||||||||

> Multi-Criteria Decision Analysis

- Many models & elicitation techniques
- Focus on weighted utility methods

> Notion of reference element

reference elements depends on the invariance property

# reference elements	Invariance condition	Elicitation
0	Invariance condition too strong: NO MODEL	
1	Strong invariance condition: only the geometric mean	
2	Standard Invariance condition: <u>many</u> <u>compensatory modèles</u>	Illustration of the elicitation process

