Many-body Quantum Score: A scalable benchmark for digital and analog QPUs and first results on a Pasqal device

Harold Erbin

IPHT, CEA Saclay (France)

TQCI International Conference – 24 June 2025

Collboration CEA-IPHT/Eviden

Outline: 1. Motivations

Motivations

Benchmark protocol

Benchmark for Rydberg QPU

Conclusion

- 1. (relatively) objective comparison between different providers
 - capabilities and performance
 - match platforms and tasks

- 1. (relatively) objective comparison between different providers
 - capabilities and performance
 - match platforms and tasks
- 2. clear targets for product development and quality control
 - identify bottlenecks or failing components
 - suggest design improvements and validate upgrades

- 1. (relatively) objective comparison between different providers
 - capabilities and performance
 - match platforms and tasks
- 2. clear targets for product development and quality control
 - identify bottlenecks or failing components
 - suggest design improvements and validate upgrades
- 3. improve transparency and trust
 - increase credibility by publishing benchmark results
 - strengthen customer confidence
 - help users make informed decisions

- 1. (relatively) objective comparison between different providers
 - capabilities and performance
 - match platforms and tasks
- 2. clear targets for product development and quality control
 - identify bottlenecks or failing components
 - suggest design improvements and validate upgrades
- 3. improve transparency and trust
 - increase credibility by publishing benchmark results
 - strengthen customer confidence
 - help users make informed decisions
- 4. standardization
 - better interoperability
 - set and follow industry standards
 - more efficient decision-making

Properties of a good benchmark

- 1. Relevance: should measure important features
- 2. Representativeness: metrics should be broadly accepted by industry and academia
- 3. Equity: all systems should be fairly compared, and metrics specialized to a technology only if not relevant for others
- 4. Repeatability: results should be unambiguous and verifiable
- 5. Cost-effectiveness: tests should be resource-efficient
- Scalability: metrics should be computable for systems of different sizes
- 7. Transparency: metrics should be readily understandable and easy to compare, and informative for non-experts

Inspired from [1907.03626, Dai-Berleant] (see also [2407.08828, Proctor et al., 2406.03905, Mesman et al.])

Levels of characterization

1. component-level

- physical qubits
- single- and multi-qubit gates / operations

2. system-level

- circuit
- logical qubits (error correction...)
- architecture design (firmware...)

3. application-level

- algorithmic (subroutines)
- end-user cases
- test suites
- frameworks

Analog- and digital-compatible benchmark

Objective [WIP, CEA-IPHT/Eviden]

Find a scalable benchmark for analog and digital QPUs.

Analog- and digital-compatible benchmark

Objective [WIP, CEA-IPHT/Eviden]

Find a scalable benchmark for analog and digital QPUs.

Challenges for analog QPU

- ▶ not universal ⇒ less abstraction and more technology-dependent
- continuous process instead of discrete operations
- many-body effective model (spin chains...)

Analog- and digital-compatible benchmark

Objective [WIP, CEA-IPHT/Eviden]

Find a scalable benchmark for analog and digital QPUs.

Challenges for analog QPU

- ▶ not universal ⇒ less abstraction and more technology-dependent
- continuous process instead of discrete operations
- many-body effective model (spin chains...)
- ⇒ application benchmark (BACQ) based on many-body dynamics
 - applications in condensed matter and quantum chemistry
 - one of the best place to look for exponential advantage

Here: motivate protocol using Rydberg QPU

Outline: 2. Benchmark protocol

Motivations

Benchmark protocol

Benchmark for Rydberg QPU

Conclusion

Rydberg spin model

- ▶ N spins 1/2 on a 2d lattice
- effective Hamiltonian

$$H_{\text{RI}} \sim \underbrace{\sum_{i < j} \frac{C_6}{r_{ij}^6} n_i n_j}_{\text{spin interaction}} + \underbrace{\frac{\hbar \Omega(t)}{2} \sum_{i} \sigma_i^{\text{X}}}_{\text{transversal}} - \underbrace{\hbar \delta(t) \sum_{i} n_i}_{\text{longitudinal}}$$

$$n_i = (\sigma_i^z + 1)/2$$

Rydberg spin model

- ▶ N spins 1/2 on a 2d lattice
- effective Hamiltonian

$$H_{\text{RI}} \sim \underbrace{\sum_{i < j} \frac{C_6}{r_{ij}^6} n_i n_j}_{\text{spin interaction}} + \underbrace{\frac{\hbar \Omega(t)}{2} \sum_{i} \sigma_i^{\text{x}}}_{\text{transversal}} - \underbrace{\hbar \delta(t) \sum_{i} n_i}_{\text{longitudinal}}$$

$$\xrightarrow[\delta \to \delta_*]{\delta \to \delta_*} J \sum_{\langle i,j \rangle} \sigma_i^{\text{z}} \sigma_j^{\text{z}} - Jg \sum_{i} \sigma_i^{\text{x}}$$

$$n_i = (\sigma_i^z + 1)/2$$

recover (approximately) nearest-neighbor transverse-field Ising model (TFIM)

Rydberg spin model

- ▶ N spins 1/2 on a 2d lattice
- effective Hamiltonian

$$H_{\text{RI}} \sim \underbrace{\sum_{i < j} \frac{C_6}{r_{ij}^6} n_i n_j}_{\text{spin interaction}} + \underbrace{\frac{\hbar \Omega(t)}{2} \sum_i \sigma_i^{\mathsf{x}}}_{\text{transversal}} - \underbrace{\hbar \delta(t) \sum_i n_i}_{\text{longitudinal}}$$

$$\xrightarrow{\delta \to \delta_*} J \sum_{\langle i,j \rangle} \sigma_i^{\mathsf{z}} \sigma_j^{\mathsf{z}} - Jg \sum_i \sigma_i^{\mathsf{x}}$$

$$n_i = (\sigma_i^z + 1)/2$$

- recover (approximately) nearest-neighbor transverse-field Ising model (TFIM)
- critical point: g = 1

Many-body quantum score (1)

MBQS test protocol

- 1. Setup a spin chain with L spin- $\frac{1}{2}$ equally spaced on a 1d ring.
- 2. Initialize the register with the state $|+\cdots+\rangle$ (σ_i^{x} eigenstate).
- 3. Evolve the system (quench) with the Ising Hamiltonian at the critical point for a duration $t_*(L)$ ("peak time").
- 4. Perform measurements $\{\sigma_i^{\rm z}\}$ and compute the connected 2-point functions

$$g_{\ell}^{(2)}(t) := \langle \sigma_1^{\mathsf{z}} \sigma_{\ell}^{\mathsf{z}} \rangle_c := \langle \sigma_1^{\mathsf{z}} \sigma_{\ell}^{\mathsf{z}} \rangle_c - \langle \sigma_1^{\mathsf{z}} \rangle \langle \sigma_{\ell}^{\mathsf{z}} \rangle$$

5. Compute the score function (average relative error with respect to the theoretical values in Ising model)

$$P_2(L) := \frac{1}{\lfloor L/2 \rfloor - 1} \sum_{\ell=2}^{\lfloor L/2 \rfloor} \left| \frac{g_\ell^{(2)\mathsf{exp}}(t_*) - g_\ell^{(2)\mathsf{th}}(t_*)}{g_\ell^{(2)\mathsf{th}}(t_*)} \right|$$

Many-body quantum score (2)

[WIP, CEA-IPHT/Eviden]

MBQS

The score S corresponds to the largest problem size L reached before failing the test with a threshold ϵ , but excluding system sizes below some cut-off:

$$S = L \implies \forall L' \in [L_{\min}, L] : P_2(L') \leq \epsilon.$$

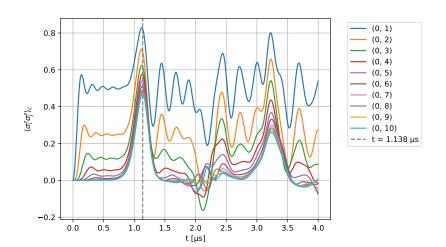
Notes

- exclude small L because of geometrical effects $L_{\min} = 5$
- may perform readout mitigation

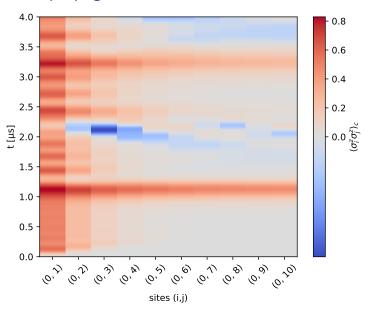
- ► Ising model
 - ightharpoonup exact solution with free fermions (Jordan–Wigner transformation) ightharpoonup compute properties in polynomial time
 - model close to Rydberg effective Hamiltonian but not identical

- ► Ising model
 - ightharpoonup exact solution with free fermions (Jordan–Wigner transformation) ightharpoonup compute properties in polynomial time
 - model close to Rydberg effective Hamiltonian but not identical
- ightharpoonup peak time $t_*(L)$
 - all spins become highly correlated
 - increases with $L \Rightarrow$ difficulty increases (probe sensitivity to decoherence)
 - increases with interatomic distance
 - highly entangled state

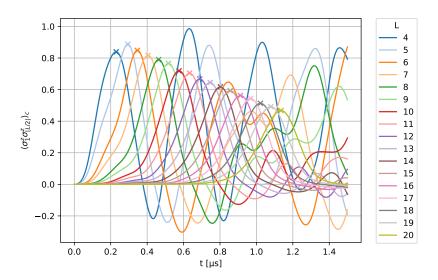
- ► Ising model
 - lacktriangle exact solution with free fermions (Jordan–Wigner transformation) ightarrow compute properties in polynomial time
 - model close to Rydberg effective Hamiltonian but not identical
- ightharpoonup peak time $t_*(L)$
 - all spins become highly correlated
 - increases with L ⇒ difficulty increases (probe sensitivity to decoherence)
 - increases with interatomic distance
 - highly entangled state
- critical point: non-trivial dynamics
 - ▶ interatomic distance ≈ Rydberg blockade radius
 - competition between different terms in Hamiltonian

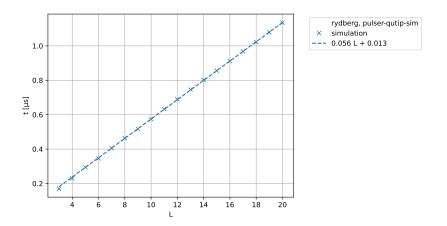

- ► Ising model
 - ightharpoonup exact solution with free fermions (Jordan–Wigner transformation) ightharpoonup compute properties in polynomial time
 - ▶ model close to Rydberg effective Hamiltonian but not identical
- ightharpoonup peak time $t_*(L)$
 - all spins become highly correlated
 - increases with $L \Rightarrow$ difficulty increases (probe sensitivity to decoherence)
 - increases with interatomic distance
 - highly entangled state
- critical point: non-trivial dynamics
 - ▶ interatomic distance ≈ Rydberg blockade radius
 - competition between different terms in Hamiltonian
- ightharpoonup initial state $|+\cdots+\rangle$
 - more challenging for Rydberg QPU (requires pulse sequence to reach the state)
 - simpler theoretically and cleaner dynamics

Classical simulations


	ground state	dynamics
integrability (free fermions)	easy	easy
MPS	easy	hard
brute-force	very hard	very hard

 \rightarrow use MPS to provide score of classical machines for comparison


2-point correlation functions


Information propagation

Antipodal correlations

Peak time prediction with linear regression

- $ightharpoonup R^2 = 0.995$, RMSE = 0.016
- ightharpoonup linear behavior ightharpoonup ballistic propagation

Outline: 3. Benchmark for Rydberg QPU

Motivations

Benchmark protocol

Benchmark for Rydberg QPU

Conclusion

Short-term benchmark: MBQSv0

MBQSv0

Perform the MBQS protocol with the following modifications:

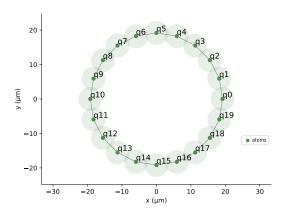
- ▶ Initial state: $|\downarrow \cdots \downarrow\rangle$ (σ_i^z eigenstate).
- ► Hamiltonian: Rydberg effective Hamiltonian.

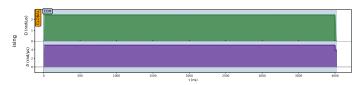
Notes

- ightharpoonup MBQS is too challenging for current QPU ightharpoonup propose a simpler intermediate benchmark
- no analytical solution because of long-range interactions
 - \rightarrow exact simulations: Pasqal's pulser + qutip

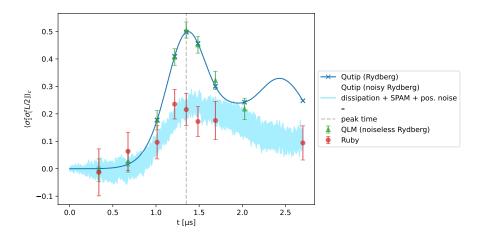
Experiments

- pulse sequence
 - lacktriangle constant Ω to reach critical point g=1
 - ightharpoonup constant δ to remove longitudinal field $h_{z,i} \approx 0$
 - \rightarrow match Ising model up to small corrections (open/periodic bc)
 - + boundary terms (open bc)

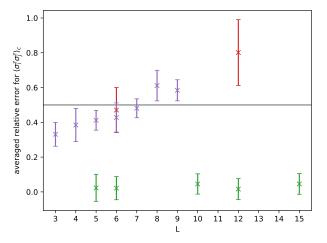

Experiments


- pulse sequence
 - lacktriangle constant Ω to reach critical point g=1
 - ightharpoonup constant δ to remove longitudinal field $h_{z,i} \approx 0$
 - → match Ising model up to small corrections (open/periodic bc)
 + boundary terms (open bc)
- implementations at TGCC
 - emulation with Eviden's QLM40
 - beta-test Pasqal's Ruby QPU (Orion Beta)

[Special thanks to people from Pasqal and TGCC]

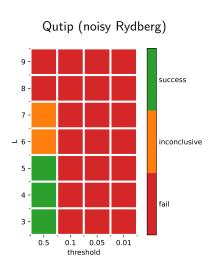


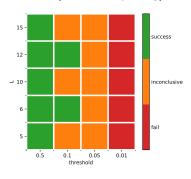
Atom register and pulses



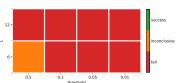
2-point correlation functions

Preliminary results on Ruby (still being commissioned)


2-point correlation errors


 $\begin{array}{c|c} \hline & \varepsilon = 0.5 \\ \hline \$ & \text{QLM (noiseless Rydberg)} \\ \hline \$ & \text{Ruby} \\ \hline \$ & \text{Qutip (noisy Rydberg)} \\ \end{array}$

⚠ Preliminary results on Ruby (still being commissioned)


Volumetric success plot

QLM (noiseless Rydberg)

Ruby

Preliminary results on Ruby (still being commissioned)

Outline: 4. Conclusion

Motivations

Benchmark protocol

Benchmark for Rydberg QPU

Conclusion

Summary and outlook

Achievements:

- benchmark protocol MBQS for analog and digital QPUs
- beta-test of the Ruby QPU at TGCC
- study in details the propagation of correlations in Ising and Rydberg spin chains
- participation to CEN/CENELEC and ISO/IEC standardization committees on quantum simulations and benchmarking

Summary and outlook

Achievements:

- benchmark protocol MBQS for analog and digital QPUs
- beta-test of the Ruby QPU at TGCC
- study in details the propagation of correlations in Ising and Rydberg spin chains
- participation to CEN/CENELEC and ISO/IEC standardization committees on quantum simulations and benchmarking

Future directions:

- open-source implementation and compare different platforms, including on gate-based device (trotterization)
- generalize benchmark to 2d geometries
- quantum control for Rydberg QPUs [WIP, Carrera-HE-Misguich]
- test many-body physics questions on Rydberg QPU