

Calculating resource overheads for fault-tolerant photonic quantum computing.

TQCI - PALAISEAU - 24 JUNE 2025

Motivation: what matters for reaching fault-tolerance

We need an FTQC roadmap with

- High threshold
 - ⇒ Tolerate more errors
- Low space and time overhead
 - ⇒ Reduce hardware footprint and wall-clock time

How to evaluate and compare FTQC roadmaps

Error thresholds

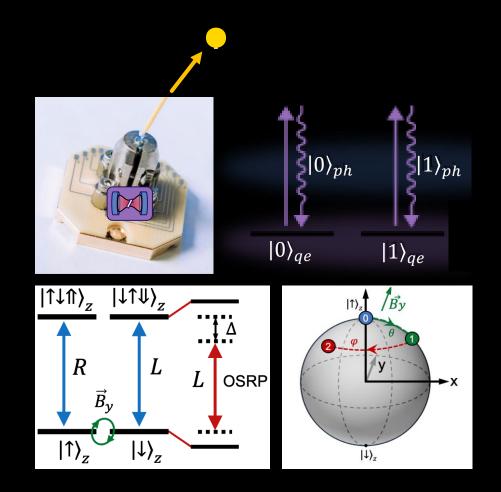
Low-level

Good to test a QEC code, but doesn't say anything about subthreshold behaviour

- Logical qubit footprint
 Good for quantum memory, but doesn't say anything about the
 overhead of performing logical operations
- End-to-end resource estimation for an algorithm
 Good benchmark, but optimisation problem of very high
 High-level dimension

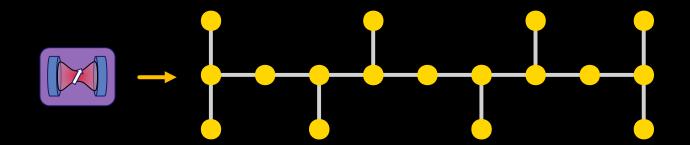
What I focus on today

Low-level resource comparison for


One model of FTQC: fusion-based quantum computing (FBQC)

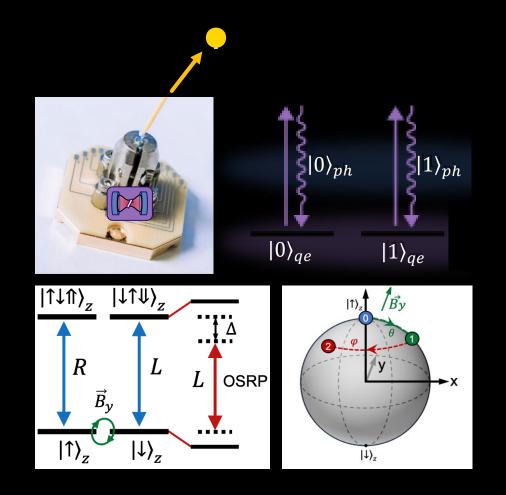
One step of FBQC: resource state generation

For three types of single-photon sources

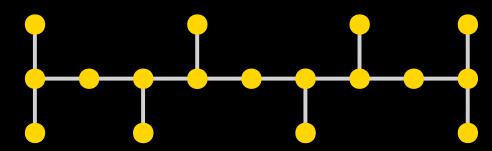


Quandela's hardware

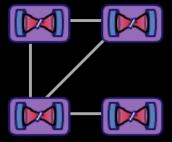
$$\begin{split} |0\rangle_{qe} + |1\rangle_{qe} & \rightarrow |0\rangle_{qe} |0\rangle_{ph1} + |1\rangle_{qe} |1\rangle_{ph1} \\ & \stackrel{\text{Emission}}{\rightarrow} |0\rangle_{qe} |0\rangle_{ph1} |0\rangle_{ph2} + |1\rangle_{qe} |1\rangle_{ph1} |1\rangle_{ph2} \end{split}$$


$$\begin{array}{c|c} |0\rangle_{\mathrm{qe}} + |1\rangle_{\mathrm{qe}} & \rightarrow & |0\rangle_{\mathrm{qe}} |0\rangle_{\mathrm{ph}} + |1\rangle_{\mathrm{qe}} |1\rangle_{\mathrm{ph}} \\ & & \stackrel{H_{\mathrm{qe}}}{\rightarrow} & \mathrm{CZ}(|+\rangle_{\mathrm{qe}}|+\rangle_{\mathrm{ph}}) \end{array}$$

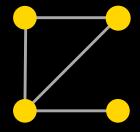
N. Lindner, T. Rudolph. Proposal for Pulsed On-Demand Sources of Photonic Cluster State Strings, *Phys. Rev. Lett.* **103**, 113602 (2009) Somaschi *et al.* Near-optimal single-photon sources in the solid state. *Nature Photon* **10**, 340–345 (2016) H. Huet *et al.* Deterministic and reconfigurable graph state generation with a single solid-state quantum emitter, arXiv:2410.23518 (2024)


Q

Quandela's hardware

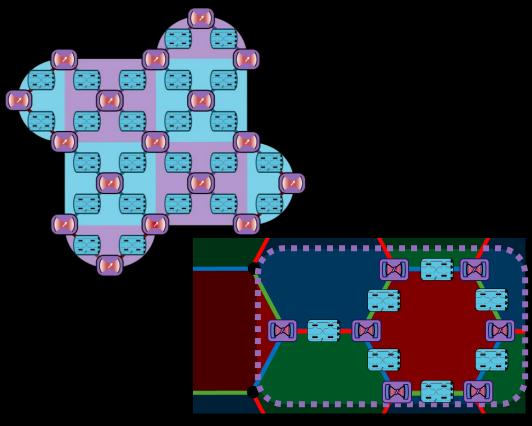


States that can be created with one source



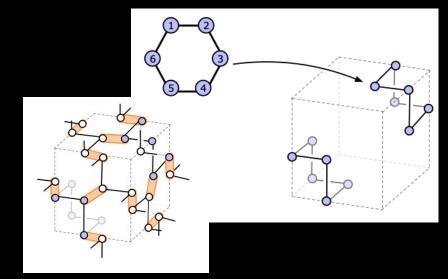
States that can be created with multiple sources

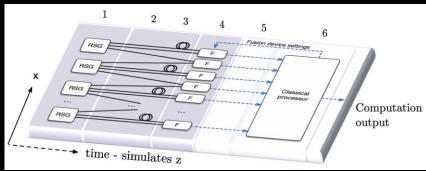
Emission →



Y. L. Lim et al., Repeat-until-success quantum computing using stationary and flying qubits, *Phys. Rev. A* 73, 012304 (2006)

Comparing our options for FTQC

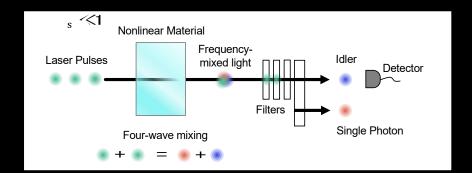

SPOQC – Spin-optical quantum computing



G. De Gliniasty *et al.* A Spin-Optical Quantum Computing Architecture, *Quantum* **8**, 1423 (2024)

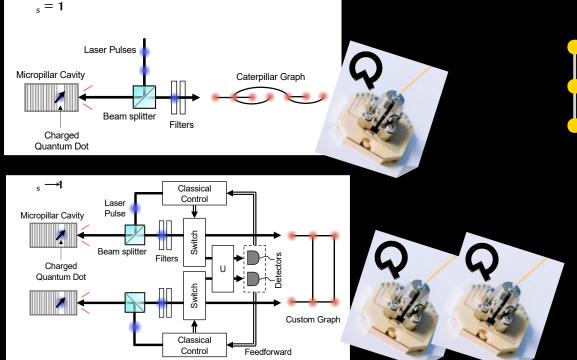
P. Hilaire *et al.* Enhanced Fault-tolerance in Photonic Quantum Computing... arXiv:2410.07065 (2024)

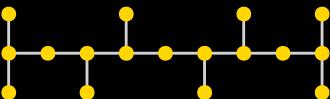
FBQC – Fusion-based quantum computing


S. Bartolucci *et al.* Fusion-based quantum computation, *Nat. Commun.* **14**, 912 (2023)

Three sources of single photons

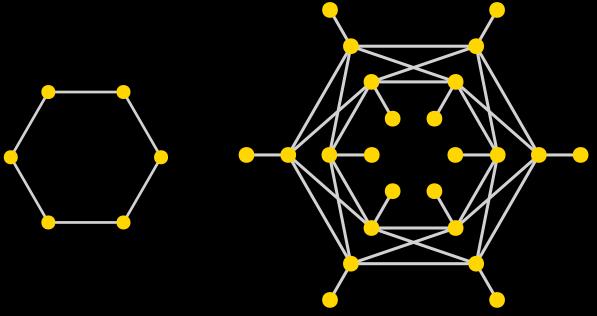
- Single photon
- Quantum emitter

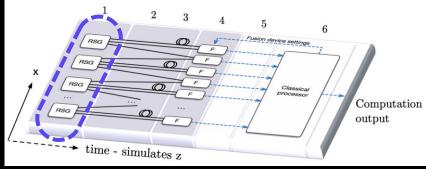

Probabilistic source



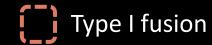
with probability p<1</p>

Caterpillar source

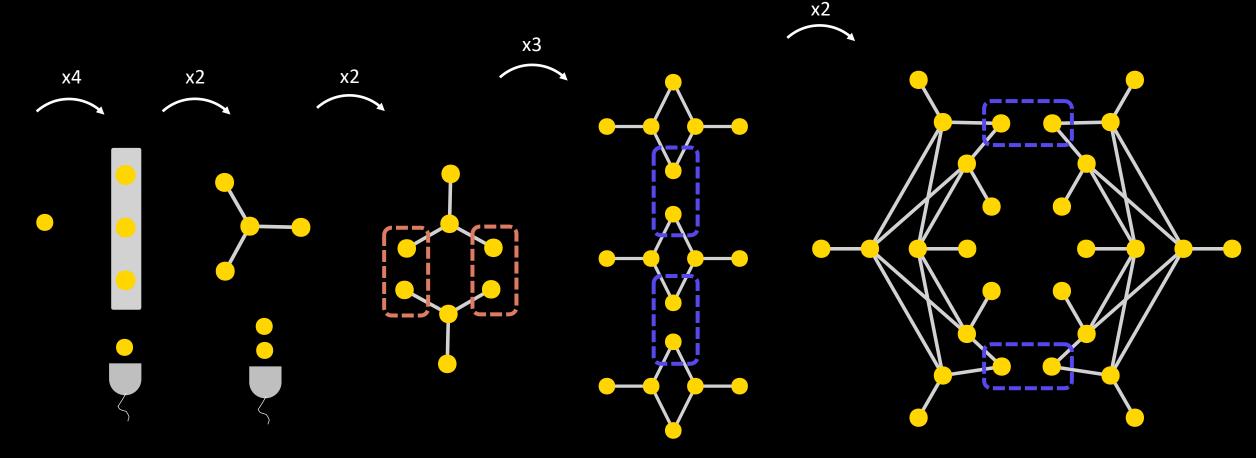

Repeat-untilsuccess module



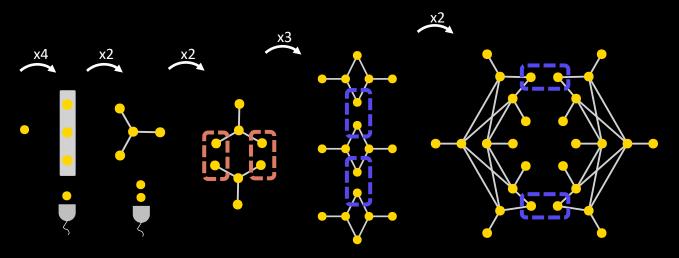
Focus on resource state generation


6-ring graph state

QPC(2,2)-encoded 6-ring graph state

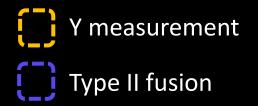


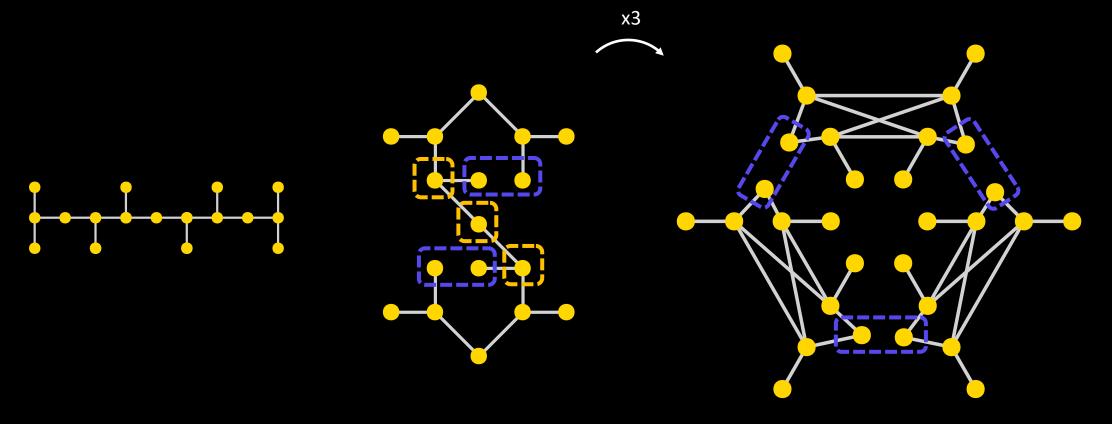
Generation scheme 1 – All-photonic


Type II fusion

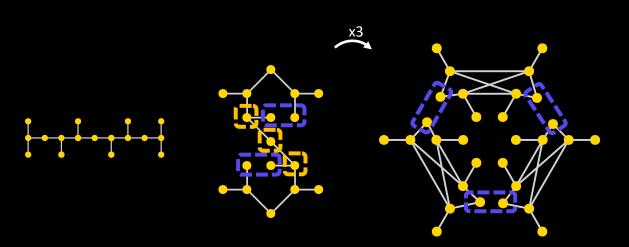
S. Bartolucci et al. Creation of Entangled Photonic States Using Linear Optics, arXiv:2106.13825 (2021)

Generation scheme 1 – All-photonic

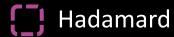

$$N_{\text{avg},i} = c_i \frac{N_{\text{avg},i-1} + a_i}{p_i}$$


Stage, i	1	2	3	4	5	6
Probability, p_i	1	$20\sqrt{2}-28$	$\frac{3+2\sqrt{2}}{64}$	$\frac{9}{16}$	$\frac{9}{16}$	$\frac{9}{16}$
Copies, c_i	4	2	2	3	2	1
Auxiliary photons, a_i Detected photons, d_i		0	0	8	8	8
		1	2	10	12	12
Cumulative average photon number, $N_{\text{avg},i}$		28	618	3339	11900	21170
Cumulative optical depth, D_i	9	15	21	27	33	36

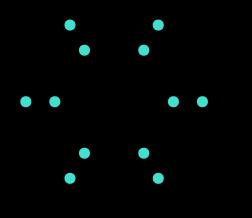
S. Bartolucci et al. Creation of Entangled Photonic States Using Linear Optics, arXiv:2106.13825 (2021)

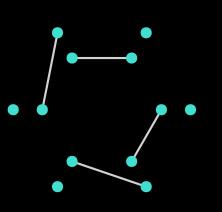

Generation scheme 2 – Caterpillar source

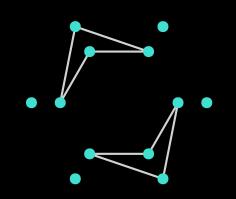
Generation scheme 2 – Caterpillar source

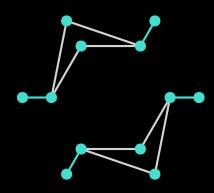


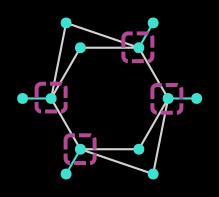
$$N_{\text{avg},i} = c_i \frac{N_{\text{avg},i-1} + a_i}{p_i}$$

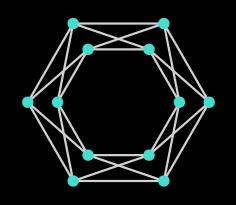

Stage, i		2	3
Probability, p_i		$\frac{9}{16}$	$\frac{27}{64}$
Copies, c_i		3	1
Auxiliary photons, a_i		4	6
Detected photons, d_i		11	12
Cumulative average photon number, $N_{\text{avg},i}$		112	280
Cumulative optical depth, D_i		9	12

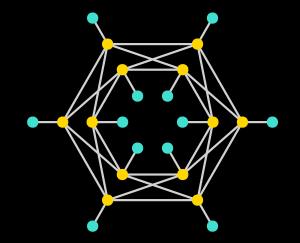


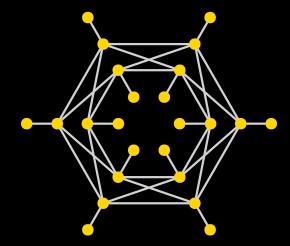

Generation scheme 3 – RUS modules

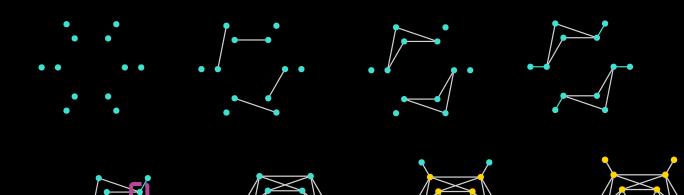



Quantum emitter



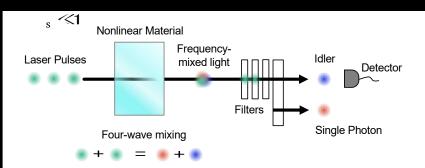


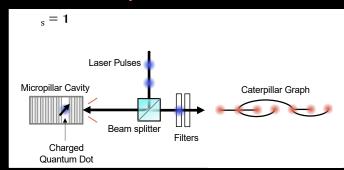




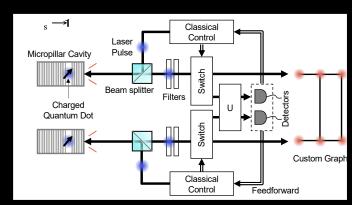
Generation scheme 3 – RUS modules

$$N_{\text{avg},i} = c_i \frac{N_{\text{avg},i-1} + a_i}{p_i}$$


Stage, i		2	3	4	5	6	7	8
Probability, p_i		1	1	1	1	1	1	1
Copies, c_i		1	1	1	1	1	1	1
Auxiliary photons, a_i		0	0	0	0	0	12	12
Detected photons, d_i		16	16	16	8	0	0	0
Cumulative average photon number, $N_{\text{avg},i}$		16	32	48	56	56	68	80
Cumulative optical depth, D_i		0	0	0	0	0	1	1


Optimal resource overhead and maximal tolerable loss

Source type	Average photon number	Resource efficiency	Number of sources	Optical depth	Maximal loss per component
Probabilistic source $p_s=5\%$	21170	0.0057%	42340	36	0.22%
Probabilistic source $p_s=25\%$	21170	0.029%	8468	36	0.22%
Caterpillar source	280	9.9%	25	12	0.65%
RUS module	80	20%	12	1	7.5%


Probabilistic source

Caterpillar source

RUS module

QUANDELA 16

Conclusion

What we showed

- Hybrid spin-photon devices enable deterministic entangling operations and easy long-range connectivity
- ➤ They drastically reduce the resource overhead of resource state generation for fusion-based quantum computing
- ➤ The generation scheme based on RUS modules is the most efficient approach

Future work

- \triangleright We focused on loss \Longrightarrow We'll investigate other sources of errors
- \blacktriangleright We focused on FBQC \Longrightarrow We'll compare SPOQC and FBQC

17

AND THANK YOU FOR YOUR ATTENTION!

arxiv:2412.08611 QUANDELA.COM