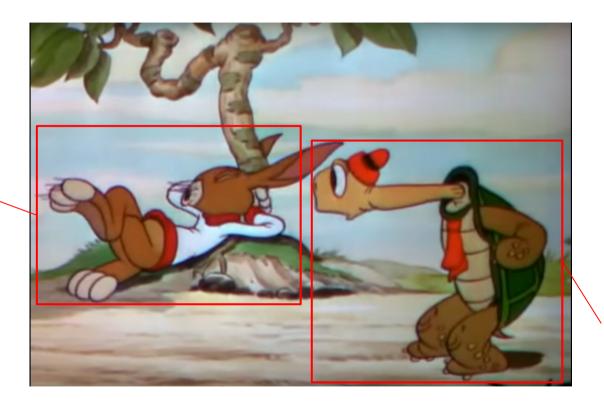
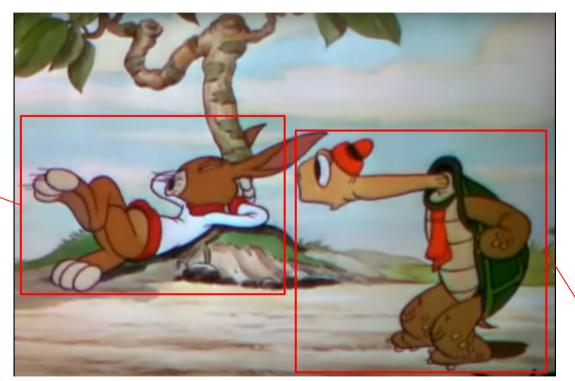


A meta-benchmark for quantum computers


Teratec TQCI Seminar 24-25th June 2025

Valentin Gilbert valentin.gilbert@quantumbenchmarkzoo.org 25/06/2025

NISQ


FTQC

NISQ

NISQ

FTQC

Key steps to interpret benchmarking results:

- Key steps to interpret benchmarking results:
 - **Understand** the protocol => Vulgarisation of the protocols

- Key steps to interpret benchmarking results:
 - **Understand** the protocol => Vulgarisation of the protocols
 - Minor changes in the protocol can have a huge impact on the results => Track protocol evolution

- Key steps to interpret benchmarking results:
 - **Understand** the protocol => Vulgarisation of the protocols
 - Minor changes in the protocol can have a huge impact on the results => Track protocol evolution
 - Check protocol **compliance** => Verification of published results

- Key steps to interpret benchmarking results:
 - **Understand** the protocol => Vulgarisation of the protocols
 - Minor changes in the protocol can have a huge impact on the results => Track protocol evolution
 - Check protocol compliance => Verification of published results
 - Compare, validate, and replicate results => Merge and discuss benchmarking results

- Key steps to interpret benchmarking results:
 - Understand the protocol => Vulgarisation of the protocols
 - Minor changes in the protocol can have a huge impact on the results => Track protocol evolution
 - Check protocol compliance => Verification of published results
 - Compare, validate, and replicate results => Merge and discuss benchmarking results
 - Challenges are insightful => Track challenges to quantum advantage claims

- Key steps to interpret benchmarking results:
 - **Understand** the protocol => Vulgarisation of the protocols
 - Minor changes in the protocol can have a huge impact on the results => Track protocol evolution
 - Check protocol **compliance** => Verification of published results
 - Compare, validate, and replicate results => Merge and discuss benchmarking results
 - Challenges are insightful => Track challenges to quantum advantage claims

No benchmarking method is perfect:

- Key steps to interpret benchmarking results:
 - Understand the protocol => Vulgarisation of the protocols
 - Minor changes in the protocol can have a huge impact on the results => Track protocol evolution
 - Check protocol compliance => Verification of published results
 - Compare, validate, and replicate results => Merge and discuss benchmarking results
 - Challenges are insightful => Track challenges to quantum advantage claims

- No benchmarking method is perfect:
 - **Assumptions** => Highlight the assumptions and consequences

- Key steps to interpret benchmarking results:
 - Understand the protocol => Vulgarisation of the protocols
 - Minor changes in the protocol can have a huge impact on the results => Track protocol evolution
 - Check protocol **compliance** => Verification of published results
 - Compare, validate, and replicate results => Merge and discuss benchmarking results
 - Challenges are insightful => Track challenges to quantum advantage claims

- No benchmarking method is perfect:
 - **Assumptions** => Highlight the assumptions and consequences
 - Strengths and limitations => Highlight the strengths and limitations

- Key steps to interpret benchmarking results:
 - **Understand** the protocol => Vulgarisation of the protocols
 - Minor changes in the protocol can have a huge impact on the results => Track protocol evolution
 - Check protocol compliance => Verification of published results
 - Compare, validate, and replicate results => Merge and discuss benchmarking results
 - Challenges are insightful => Track challenges to quantum advantage claims

- No benchmarking method is perfect:
 - Assumptions => Highlight the assumptions and consequences
 - Strengths and limitations => Highlight the strengths and limitations
 - Each approach does not speak to everyone => Multi-level approach and exhaustivity

- Key steps to interpret benchmarking results:
 - Understand the protocol => Vulgarisation of the protocols
 - Minor changes in the protocol can have a huge impact on the results => Track protocol evolution
 - Check protocol **compliance** => Verification of published results
 - Compare, validate, and replicate results => Merge and discuss benchmarking results
 - Challenges are insightful => Track challenges to quantum advantage claims

- No benchmarking method is perfect:
 - **Assumptions** => Highlight the assumptions and consequences
 - Strengths and limitations => Highlight the strengths and limitations
 - Each approach does not speak to everyone => Multi-level approach and exhaustivity

Metrics and protocols are strategic => Independent third parties are required

Try to be **exhaustive**

 interesting benchmarking approaches may pass under the radar

Try to be **exhaustive**

 interesting benchmarking approaches may pass under the radar

Try to be **objective**

- academic support
- strengths and limitations of protocols

Try to be **exhaustive**

- interesting benchmarking approaches may pass under the radar

Try to be **objective**

support
- strengths and
limitations of
protocols

- academic

- respect the protocol
- do not trust raw numbers
- results require validation and supervision

Try to be **exhaustive**

 interesting benchmarking approaches may pass under the radar

Try to be **objective**

support
- strengths and
limitations of
protocols

- academic

Pay attention to **details**

protocol - do not trust raw numbers

- respect the

results require validation and supervision Quantum Benchmark Zoo is a website that:

Try to be **exhaustive**

 interesting benchmarking approaches may pass under the radar

Try to be **objective**

support
- strengths and
limitations of
protocols

- academic

- respect the protocoldo not trust
- do not trust raw numbers
- results require validation and supervision

- Quantum Benchmark Zoo is a website that:
 - summarizes quantum benchmarking protocols

Try to be **exhaustive**

 interesting benchmarking approaches may pass under the radar

Try to be **objective**

support
- strengths and
limitations of
protocols

- academic

- respect the protocoldo not trust raw
- do not trust raw numbers
- results require validation and supervision

- Quantum Benchmark Zoo is a website that:
 - summarizes quantum benchmarking protocols
 - identifies limits and extensions to benchmarking protocols

Try to be **exhaustive**

 interesting benchmarking approaches may pass under the radar

Try to be **objective**

support
- strengths and
limitations of
protocols

- academic

- respect the protocol
- do not trust raw numbers
- results require validation and supervision

- Quantum Benchmark Zoo is a website that:
 - summarizes quantum benchmarking protocols
 - identifies limits and extensions to benchmarking protocols
 - gathers benchmarking results

Try to be **exhaustive**

 interesting benchmarking approaches may pass under the radar

Try to be **objective**

support
- strengths and
limitations of
protocols

- academic

- respect the protocol
- do not trust raw numbers
- results require validation and supervision

- Quantum Benchmark Zoo is a website that:
 - summarizes quantum benchmarking protocols
 - identifies limits and extensions to benchmarking protocols
 - gathers benchmarking results
 - provides strategic analytics on quantum computers' performance

Try to be **exhaustive**

 interesting benchmarking approaches may pass under the radar

Try to be **objective**

support
- strengths and
limitations of
protocols

- academic

Pay attention to **details**

- respect the protocol
- do not trust raw numbers
- results require validation and supervision

- Quantum Benchmark Zoo is a website that:
 - summarizes quantum benchmarking protocols
 - identifies limits and extensions to benchmarking protocols
 - gathers benchmarking results
 - provides strategic analytics on quantum computers' performance

Quantum Benchmark Zoo is not:

Try to be **exhaustive**

 interesting benchmarking approaches may pass under the radar

Try to be **objective**

support
- strengths and
limitations of
protocols

- academic

- respect the protocol
- do not trust raw numbers
- results require validation and supervision

- Quantum Benchmark Zoo is a website that:
 - summarizes quantum benchmarking protocols
 - identifies limits and extensions to benchmarking protocols
 - gathers benchmarking results
 - provides strategic analytics on quantum computers' performance

- Quantum Benchmark Zoo is not:
 - a benchmarking library

Try to be **exhaustive**

 interesting benchmarking approaches may pass under the radar

Try to be **objective**

support
- strengths and
limitations of
protocols

- academic

Pay attention to **details**

- respect the protocol
- do not trust raw numbers
- results require validation and supervision

Quantum Benchmark Zoo is a website that:

- summarizes quantum benchmarking protocols
- identifies limits and extensions to benchmarking protocols
- gathers benchmarking results
- provides strategic analytics on quantum computers' performance

Quantum Benchmark Zoo is not:

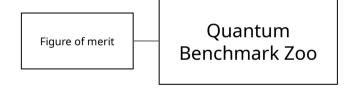
- a benchmarking library
- a protocol

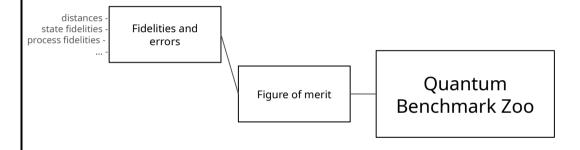
Try to be **exhaustive**

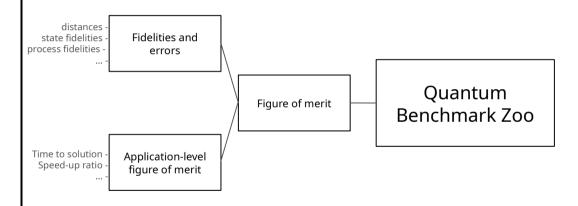
 interesting benchmarking approaches may pass under the radar

Try to be **objective**

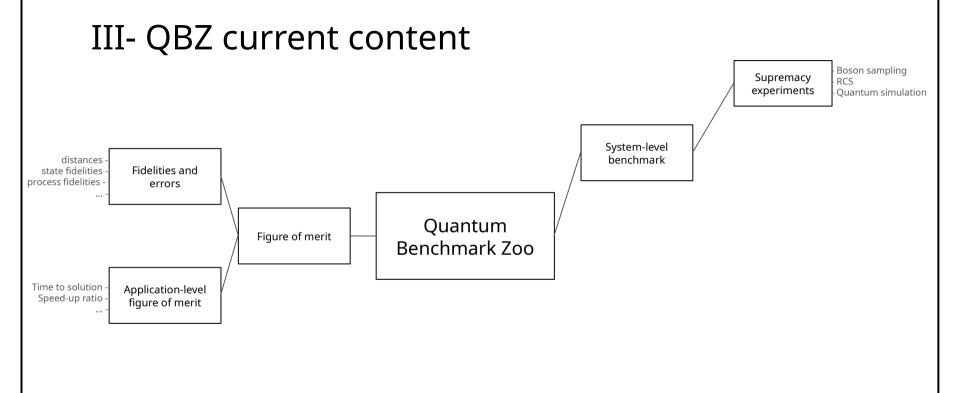
support
- strengths and
limitations of
protocols

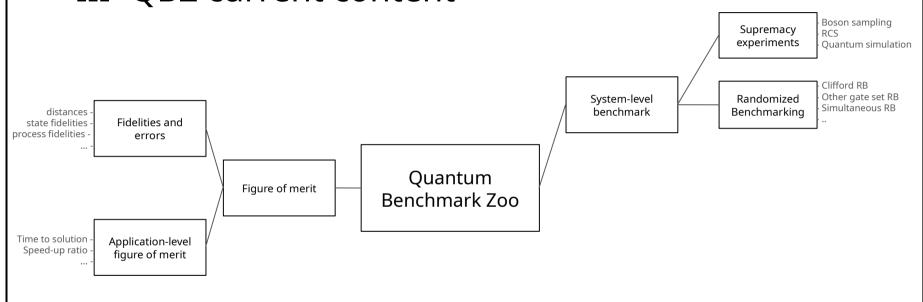

- academic

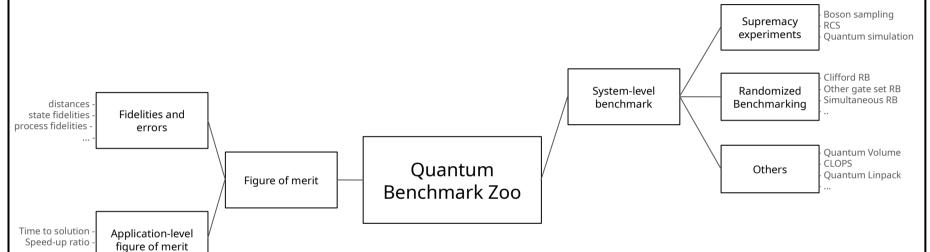

- respect the protocol
- do not trust raw numbers
- results require validation and supervision

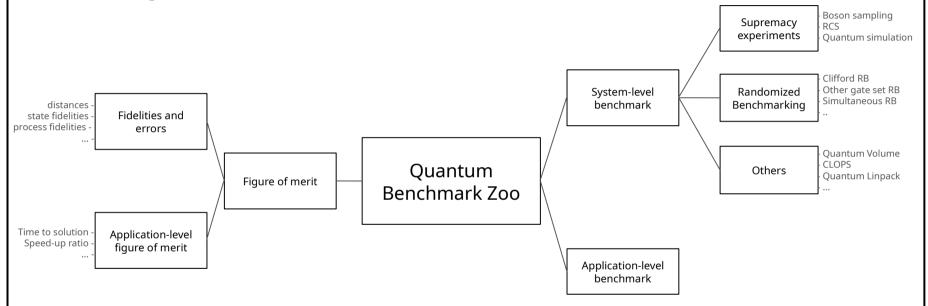

- Quantum Benchmark Zoo is a website that:
 - summarizes quantum benchmarking protocols
 - identifies limits and extensions to benchmarking protocols
 - gathers benchmarking results
 - provides strategic analytics on quantum computers' performance

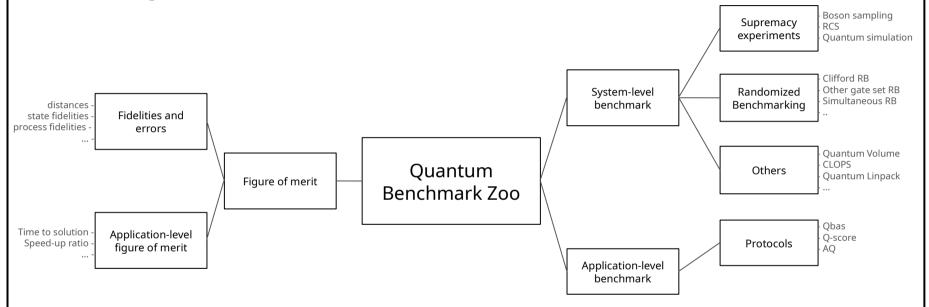

- Quantum Benchmark Zoo is not:
 - a benchmarking library
 - a protocol
 - a real zoo

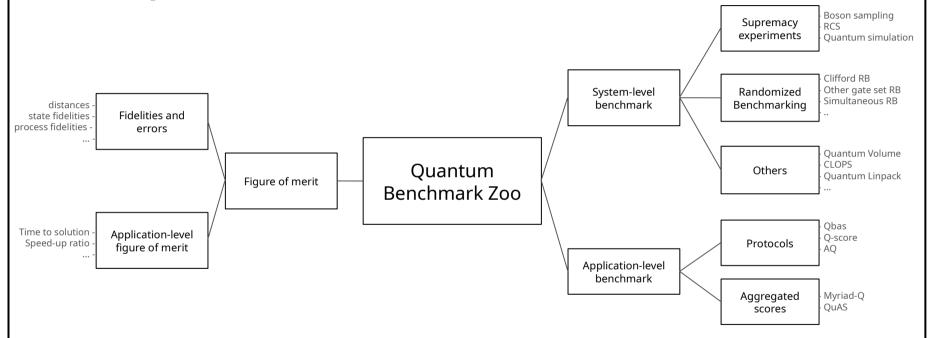

Quantum Benchmark Zoo

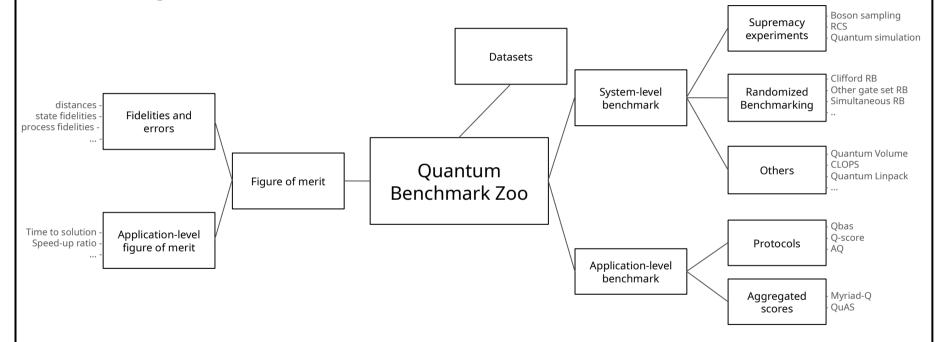


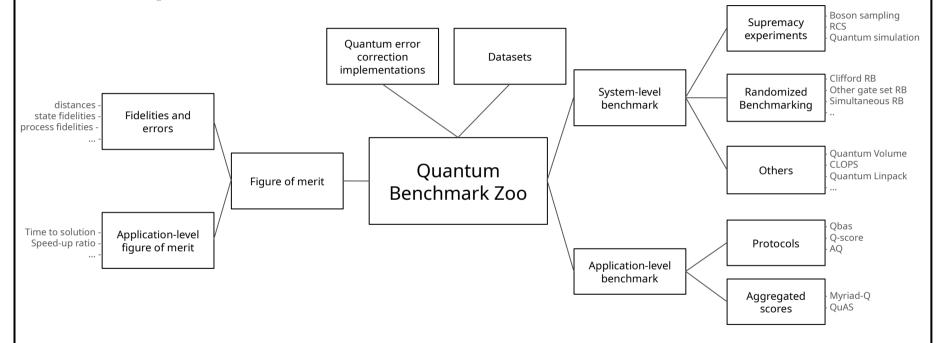


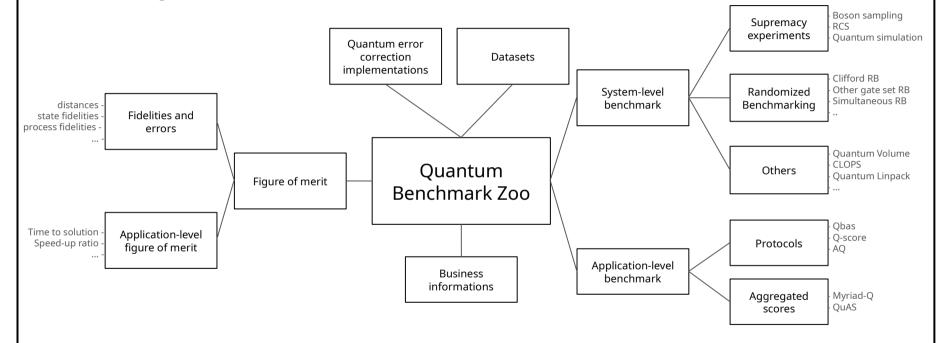


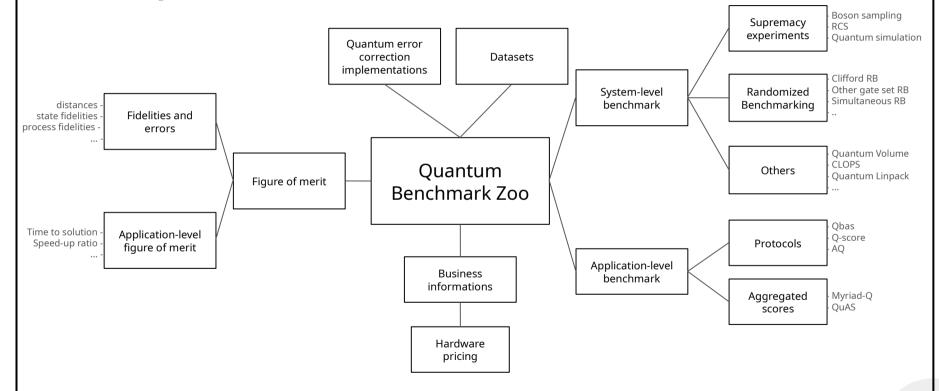


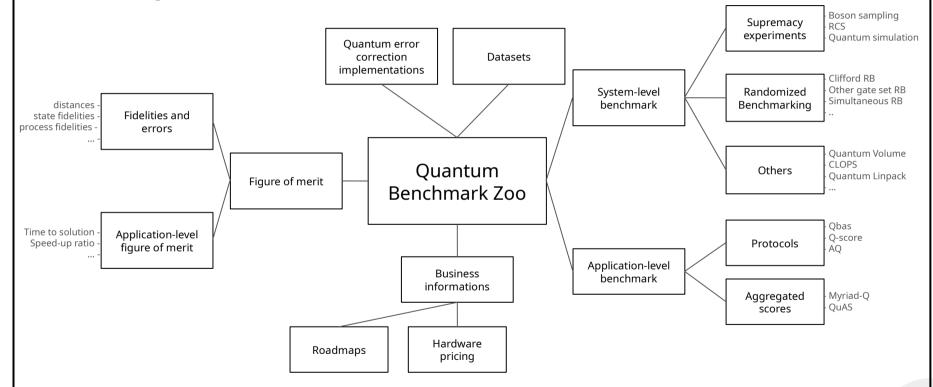


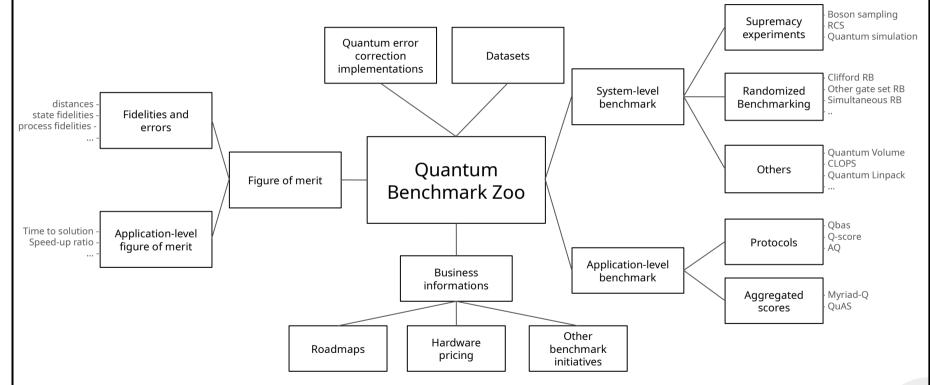












The different protocols used for quantum supremacy:

- The different protocols used for quantum supremacy:
 - Random circuit sampling

- The different protocols used for quantum supremacy:
 - Random circuit sampling
 - Boson sampling and its derivatives

- The different protocols used for quantum supremacy:
 - Random circuit sampling
 - Boson sampling and its derivatives
 - Quantum simulation (analog and gate-based)

- The different protocols used for quantum supremacy:
 - Random circuit sampling
 - Boson sampling and its derivatives
 - Quantum simulation (analog and gate-based)
- "In a nutshell" section for nontechnical audience (very high-level concepts)

- The different protocols used for quantum supremacy:
 - Random circuit sampling
 - Boson sampling and its derivatives
 - Quantum simulation (analog and gate-based)
- "In a nutshell" section for nontechnical audience (very high-level concepts)
- More specialized description of the protocol (accessibility)

- The different protocols used for quantum supremacy:
 - Random circuit sampling
 - Boson sampling and its derivatives
 - Quantum simulation (analog and gate-based)
- "In a nutshell" section for nontechnical audience (very high-level concepts)
- More specialized description of the protocol (accessibility)
 - Protocol steps

- The different protocols used for quantum supremacy:
 - Random circuit sampling
 - Boson sampling and its derivatives
 - Quantum simulation (analog and gate-based)
- "In a nutshell" section for nontechnical audience (very high-level concepts)
- More specialized description of the protocol (accessibility)
 - Protocol steps
 - Assumptions

- The different protocols used for quantum supremacy:
 - Random circuit sampling
 - Boson sampling and its derivatives
 - Quantum simulation (analog and gate-based)
- "In a nutshell" section for nontechnical audience (very high-level concepts)
- More specialized description of the protocol (accessibility)
 - Protocol steps
 - Assumptions
 - Limitations

- The different protocols used for quantum supremacy:
 - Random circuit sampling
 - Boson sampling and its derivatives
 - Quantum simulation (analog and gate-based)
- "In a nutshell" section for nontechnical audience (very high-level concepts)
- More specialized description of the protocol (accessibility)
 - Protocol steps
 - Assumptions
 - Limitations
 - Existing implementations

- The different protocols used for quantum supremacy:
 - Random circuit sampling
 - Boson sampling and its derivatives
 - Quantum simulation (analog and gate-based)
- "In a nutshell" section for nontechnical audience (very high-level concepts)
- More specialized description of the protocol (accessibility)
 - Protocol steps
 - Assumptions
 - Limitations
 - Existing implementations
 - Protocol extensions

- The different protocols used for quantum supremacy:
 - Random circuit sampling
 - Boson sampling and its derivatives
 - Quantum simulation (analog and gate-based)
- "In a nutshell" section for nontechnical audience (very high-level concepts)
- More specialized description of the protocol (accessibility)
 - Protocol steps
 - Assumptions
 - Limitations
 - Existing implementations
 - Protocol extensions
- Results (raw numbers)

- The different protocols used for quantum supremacy:
 - Random circuit sampling
 - Boson sampling and its derivatives
 - Quantum simulation (analog and gate-based)
- "In a nutshell" section for nontechnical audience (very high-level concepts)
- More specialized description of the protocol (accessibility)
 - Protocol steps
 - Assumptions
 - Limitations
 - Existing implementations
 - Protocol extensions
- Results (raw numbers)
- Challenges

Date & Ref.	Pb. 💠	n Å	m 🐇	Group - Chip	Type 🖕	Challenged Ref.	Weakly Refuted Ref.	Refuted Ref.
2019/10 [2]	RCS	53	20	Google - Sycamore	Superconducting	[3], [4], [5], [6], [7], [8], [9]	[10], [11]	[12]
2020/03 [13]	GBS	50	100	USTC - Jiuzhang	Photonic		[14]	
2021/06 [15]	RCS	56	20	USTC - Zuchongzhi	Superconducting	[11], [16]		
2021/06 [17]	GBS	50	144	USTC - Jiuzhang 2.0	Photonic		[14]	
2021/09 [18]	RCS	60	24	USTC - Zuchongzhi	Superconducting	[16], [9]		
2022/06 [19]	GBS	216	216	Xanadu - Borealis	Photonic		[14]	
2023/04 [16]	RCS	67	32	Google - Sycamore	Superconducting			
2023/04 [16]	RCS	70	24	Google - Sycamore	Superconducting			
2023/04 [20]	GBS	50	144	USTC - Jiuzhang 3.0	Photonic		[14]	
2023/06 [21]	Qsim	127	60	IBM - Kyiv	Superconducting	[22]		[23], [24], [25], [26], [27], [28], [27]
2024/03 [29]	Qsim	567	-	D-Wave - ADV1/2	Superconducting Annealing	[30], [31]		
2024/12 [32]	RCS	83	32	USTC - Zuchongzhi 3.0	Superconducting			

Content that will be added in the future:

- Content that will be added in the future:
 - Application and **use case** benchmarking with **critical analysis** (e.g., optimization).

- Content that will be added in the future:
 - Application and **use case** benchmarking with **critical analysis** (e.g., optimization).
 - **Component-level** benchmark (process and figure of merits closer to the hardware)

- Content that will be added in the future:
 - Application and **use case** benchmarking with **critical analysis** (e.g., optimization).
 - **Component-level** benchmark (process and figure of merits closer to the hardware)
 - Benchmarking frameworks

- Content that will be added in the future:
 - Application and **use case** benchmarking with **critical analysis** (e.g., optimization).
 - **Component-level** benchmark (process and figure of merits closer to the hardware)
 - Benchmarking frameworks
 - Benchmarking of **emulators**' performance

- Content that will be added in the future:
 - Application and **use case** benchmarking with **critical analysis** (e.g., optimization).
 - **Component-level** benchmark (process and figure of merits closer to the hardware)
 - Benchmarking frameworks
 - Benchmarking of **emulators**' performance
 - Benchmarking guidelines and good practices

- Content that will be added in the future:
 - Application and **use case** benchmarking with **critical analysis** (e.g., optimization).
 - **Component-level** benchmark (process and figure of merits closer to the hardware)
 - Benchmarking frameworks
 - Benchmarking of **emulators**' performance
 - Benchmarking guidelines and good practices
 - **Analytics** for performance evolutions and trends

VI- How to contribute?

VI- How to contribute?

Academics & Volunteers:

Academics & Volunteers:

Create new content

Academics & Volunteers:

- Create new content
- Verify existing content

Academics & Volunteers:

- Create new content
- Verify existing content

Source code hosted on Github

Academics & Volunteers:

- Create new content
- Verify existing content

Source code hosted on Github

Content mainly in Markdown

Academics & Volunteers:

- Create new content
- Verify existing content

Source code hosted on Github

Content mainly in Markdown

Academics & Volunteers:

- Create new content
- Verify existing content

Source code hosted on Github

Content mainly in Markdown

Companies (hardware and software):

Benchmarking data:

Academics & Volunteers:

- Create new content
- Verify existing content

Source code hosted on Github

Content mainly in Markdown

- Benchmarking data:
 - Calibration

Academics & Volunteers:

- Create new content
- Verify existing content

Source code hosted on Github

Content mainly in Markdown

- Benchmarking data:
 - Calibration
 - Fidelity

Academics & Volunteers:

- Create new content
- Verify existing content

Source code hosted on Github

Content mainly in Markdown

- Benchmarking data:
 - Calibration
 - Fidelity
 - others

Academics & Volunteers:

- Create new content
- Verify existing content

Source code hosted on Github

Content mainly in Markdown

<u>Companies (hardware and software):</u>

- Benchmarking data:
 - Calibration
 - Fidelity
 - others

 Details on protocols used to benchmark your computers

Academics & Volunteers:

- Create new content
- Verify existing content

Source code hosted on Github

Content mainly in Markdown

- Benchmarking data:
 - Calibration
 - Fidelity
 - others

- Details on protocols used to benchmark your computers
 - What aspect of performance is meaningful to you?

Academics & Volunteers:

- Create new content
- Verify existing content

Source code hosted on Github

Content mainly in Markdown

<u>Companies (hardware and software):</u>

- Benchmarking data:
 - Calibration
 - Fidelity
 - others

- Details on protocols used to benchmark your computers
 - What aspect of performance is meaningful to you?

contact@quantumbenchmarkzoo.org

Huge thanks to current contributors

Daniel Vert Ph.D Quantum computing

Gabriella Bettonte Ph.D Quantum computing

Olivier Rousselle Ph.D Quantum Physics

Lucas Phab Quantum engineer

Julien Rodriguez Ph.D Optimization

Antoine Croisille Data engineer

Rasha Friji Ph.D AI

THANK YOU!

contact@quantumbenchmarkzoo.org

Quantum Benchmark Zoo website:

