

Benchmarking Quantum Computers

An illustration on the case of D-Wave quantum annealers

S. Louise

stephane.louise@cea.fr

June, 24-25th 2025, TQCI, Palaiseau

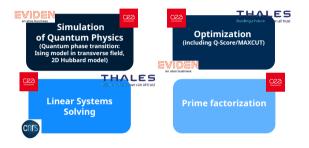
W W W

Section 1

Context

French QC applicative benchmarking "BACQ"

A polyvalent suite of benchmark for applications of QC addressing several fields



French QC applicative benchmarking "BACQ"

A polyvalent suite of benchmark for applications of QC addressing several fields

We aim to address all possible kind of QC harware, including:

- gate-based quantum computers
- analog quantum computers and quantum annealers
- work on "quantum inspired" solutions (e.g. NEC, Fujitsu ...)
 - (aim to, future) also Photonic QCs (e.g. Quandela)

Application to quantum annealers (D-Wave)

D-Wave quantum annealers are a series of quantum computers:

- The oldest commercial series of quantum computers
- Not universal QCs (not gate-based)
- Primarily aimed at optimization problems

Application to quantum annealers (D-Wave)

D-Wave quantum annealers are a series of quantum computers:

- The oldest commercial series of quantum computers
- Not universal QCs (not gate-based)
- Primarily aimed at optimization problems

Utilizing machines that are not meant at universal computing make them challenging for benchmarking on general applications

Application to quantum annealers (D-Wave)

D-Wave quantum annealers are a series of quantum computers:

- The oldest commercial series of quantum computers
- Not universal QCs (not gate-based)
- Primarily aimed at optimization problems

Utilizing machines that are not meant at universal computing make them challenging for benchmarking on general applications

- Optimization:
 - ATOS/Eviden Q-Score (MaxCut), SotA TNO:
 - DW-2000Q **QScore**= **70**
 - DW-Advantage **QScore**= **180**
 - MCM Gn series (to be presented)
- Prime factorization:
 - SotA: DW-Advantage current best: factorization of $8,219,999=32,749\times251$

Linear System Solving (to be presented)

D-Wave Quantum Annealers: main points

D:Wave

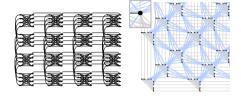
Canadian Enterprise funded in 1999. Provider of quantum computing solutions since 2009

- Superconducting flux qubits (nobium)
- 5 generations of QPU: 128, 1152, 2048, 5000+
- next generation: Advantage 2, 7440 qubits (end of 2024?)
- Principle: Quantum Annealing (QA)

D-Wave Quantum Annealers: main points

Canadian Enterprise funded in 1999. Provider of quantum computing solutions since 2009

- Superconducting flux qubits (nobium)
- 5 generations of QPU: 128, 1152, 2048, 5000+
- next generation: Advantage 2, 7440 qubits (end of 2024?)
- Principle: Quantum Annealing (QA)

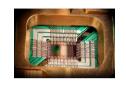


- Chimera = 6 connections/qubit
- Pegasus= 15 connections/qubit
- Zephyr= 20 connections/qubit

Really sparce compared to the number of qubits

Image credits: D-Wave™

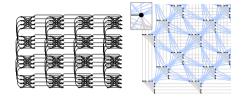
D-Wave Quantum Annealers: main points



Canadian Enterprise funded in 1999. Provider of quantum computing solutions since 2009

- Superconducting flux qubits (nobium)
- 5 generations of QPU: 128, 1152, 2048, 5000+
- next generation: Advantage 2, 7440 qubits (end of 2024?)
- Principle: Quantum Annealing (QA)

Ising Hamiltonian



- Chimera = 6 connections/qubit
- Pegasus= 15 connections/qubit
- Zephyr= 20 connections/qubit

Really sparce compared to the number of qubits

Image credits: D-Wave™

$$\mathcal{H}_{ls} = \sum_{i=0}^{n-1} h_i \sigma_i + \sum_i \sum_{j \neq i} J_{ij} \sigma_i \sigma_j$$
 equiv. to QUBO problem

Linear System Solving is a highly expected application of QC:

Linear System Solving is a highly expected application of QC:

Exponential speed-up (HHL algorithm, Harrow, Hassidim and Lloyd [2009])

Linear System Solving is a highly expected application of QC:

- Exponential speed-up (HHL algorithm, Harrow, Hassidim and Lloyd [2009])
- Potential application: numerical simulations, partial differential equation solving, ML, etc.

Linear System Solving is a highly expected application of QC:

- Exponential speed-up (HHL algorithm, Harrow, Hassidim and Lloyd [2009])
- Potential application: numerical simulations, partial differential equation solving, ML, etc.

HHL is not applicable to analog QCs or Quantum Annealers.

w www

Linear System Solving is a highly expected application of QC:

- Exponential speed-up (HHL algorithm, Harrow, Hassidim and Lloyd [2009])
- Potential application: numerical simulations, partial differential equation solving, ML, etc.

HHL is not applicable to analog QCs or Quantum Annealers.

- The benchmark suite is not about Quantum Advantage
- It is about technology readiness and comparison/metrology

W WW

Linear System Solving is a highly expected application of QC:

- Exponential speed-up (HHL algorithm, Harrow, Hassidim and Llovd [2009])
- Potential application: numerical simulations, partial differential equation solving, ML, etc.

HHL is not applicable to analog QCs or Quantum Annealers.

- The benchmark suite is not about Quantum Advantage
- It is about technology readiness and comparison/metrology

Quantum Annealing / D-Wave quantum computers

- Are not easily comparable to gate-based QC
- Are specialized computer for Ising Hamiltonian/QUBO solving
- Are not expected to reach exponential speedup

W WW

QUBO problem, Ising Hamiltonian and Adiabatic evolution

- Generalized Ising problem (2D): $\mathcal{H}(\mathbf{h}, \mathbf{J}, \mathbf{s}) = \sum_i h_i s_i + \sum_{i < i} J_{ii} s_i s_i$ with s_k spins and $J_{i,i}$ coupling constants
- **QUBO** problems e.g. $f = x^T Q x = \sum_{i \le i} q_{i,j} x_i x_i$ with $x_i \in \{0,1\}, \forall i \in \{0,1\},$

QUBO problem, Ising Hamiltonian and Adiabatic evolution

- Generalized Ising problem (2D): $\mathcal{H}(\mathbf{h}, \mathbf{J}, \mathbf{s}) = \sum_i h_i s_i + \sum_{i < i} J_{ij} s_i s_j$ with s_k spins and $J_{i,j}$ coupling constants
- **QUBO** problems e.g. $f = x^T Q x = \sum_{i < i} q_{i,j} x_i x_j$ with $x_i \in \{0,1\}, \forall i$
- Variable substitutions: $s_i = 2x_i 1$ with $s_i \in \{-1, 1\}$

QUBO problem, Ising Hamiltonian and Adiabatic evolution

- Generalized Ising problem (2D): $\mathcal{H}(\mathbf{h}, \mathbf{J}, \mathbf{s}) = \sum_i h_i s_i + \sum_{i < j} J_{ij} s_i s_j$ with s_k spins and $J_{i,j}$ coupling constants
- **QUBO** problems e.g. $f = x^T Q x = \sum_{i \le i} q_{i,j} x_i x_j$ with $x_i \in \{0,1\}, \forall i$
- Variable substitutions: $s_i = 2x_i 1$ with $s_i \in \{-1, 1\}$

Quantum Annealing (QA) is inspired by the Adiabatic theorem of QM

$$\mathcal{H}(t) = f(1 - \frac{t}{\tau})\mathcal{H}_d + f(\frac{t}{\tau})\mathcal{H}_t \text{ with}$$

$$\begin{cases}
\mathcal{H}_d = \sum_{i} \sigma_i^{\mathsf{x}} \\
\mathcal{H}_t = \sum_{i} h_i \sigma_i^{\mathsf{z}} + \sum_{(i,j) \in G} J_{i,j} \sigma_i^{\mathsf{z}} \sigma_j^{\mathsf{z}}
\end{cases}$$
(2)

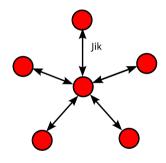
- \mathcal{H}_d driver Hamiltonian
- lacksquare \mathcal{H}_t target Hamiltonian
- lacksquare au annealing time

Section 2

Maximum Cardinality Matching, the Gn series

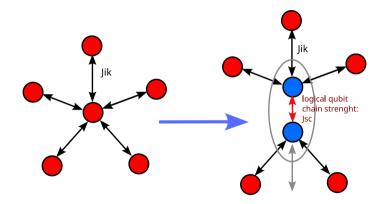
Principles and caveats of minor-embedding on D-Wave

Illustration: case of an architecture with 4 couplings/qubit and a problem with 5 couplings



Principles and caveats of minor-embedding on D-Wave

Illustration: case of an architecture with 4 couplings/qubit and a problem with 5 couplings



Decide variable allocation and mapping (minor-embedding, NP-hard)

Decide the chain-strenght: usually as a ratio (Relative Chain Strength, RCS)

Quantum Annealing being a heuristic we should treat it as such

- Finding a combinatorial problem with a simple to evaluate optimum
- ATOS defined the Q-Score [1] based on the Max-Cut problem (NP-hard, unconstrained)

Quantum Annealing being a heuristic we should treat it as such

- Finding a combinatorial problem with a simple to evaluate optimum
- ATOS defined the Q-Score [1] based on the Max-Cut problem (NP-hard, unconstrained)
- We decided on a polynomially hard problem: the Maximum Cardinality Matching (MCM)

Quantum Annealing being a heuristic we should treat it as such

- Finding a combinatorial problem with a simple to evaluate optimum
- ATOS defined the Q-Score [1] based on the Max-Cut problem (NP-hard, unconstrained)
- We decided on a polynomially hard problem: the Maximum Cardinality Matching (MCM)

Particularly the G_n series defined by Sasaki & Hajek [2], 1988

Quantum Annealing being a heuristic we should treat it as such

- Finding a combinatorial problem with a simple to evaluate optimum
- ATOS defined the Q-Score [1] based on the Max-Cut problem (NP-hard, unconstrained)
- We decided on a polynomially hard problem: the Maximum Cardinality Matching (MCM)

Particularly the G_n series defined by Sasaki & Hajek [2], 1988

- A matching is a single bound between 2 populations (= constrained problem)
- A maximum matching is the configuration of matchings that maximize their number
- The G_n series = instances of MCM, easy to solve
 - demonstrated the slow convergence of the Simulated Annealing in some cases
 - $(n+1)^3$ possible matchings but only $(n+1)^2$ in the solution
 - \blacksquare Selecting randomly a given matching is increasingly counterproductive as n grows

Quantum Annealing being a heuristic we should treat it as such

- Finding a combinatorial problem with a simple to evaluate optimum
- ATOS defined the Q-Score [1] based on the Max-Cut problem (NP-hard, unconstrained)
- We decided on a polynomially hard problem: the Maximum Cardinality Matching (MCM)

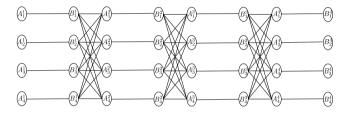
Particularly the G_n series defined by Sasaki & Hajek [2], 1988

- A matching is a single bound between 2 populations (= constrained problem)
- A maximum matching is the configuration of matchings that maximize their number
- The G_n series = instances of MCM, easy to solve
 - demonstrated the slow convergence of the Simulated Annealing in some cases
 - $(n+1)^3$ possible matchings but only $(n+1)^2$ in the solution
 - \blacksquare Selecting randomly a given matching is increasingly counterproductive as n grows

The G_n series = good candidate to complement the Q-Score on optimization problems

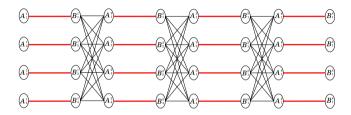
G_n series illustration

Exemple: G_3



*G*_n series illustration

Exemple: G_3

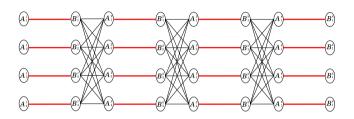


This is a "trap" for simulated annealing:

■ There is a high chance to select an edge in the bipartite portions of the graph

G_n series illustration

Exemple: G_3



This is a "trap" for simulated annealing:

■ There is a high chance to select an edge in the bipartite portions of the graph

We must adapt it to an Ising Hamiltonian/QUBO formulation

- The maximum matching problem is constrained ≠ QUBO/ISing
- Change the economic function (the Hamiltonian) to take the constraints into account

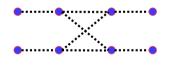
QUBO formulation

QUBO (for minimazation):

$$q_{\mathsf{ee}} = -1 - 2\lambda \; \mathsf{et} \; q_{\mathsf{ee'}} = egin{cases} 2\lambda & \mathsf{si} \; \exists v \in \mathsf{N}/e \in \mathsf{\Gamma}(v) \; \mathsf{and} \; e' \in \mathsf{\Gamma}(v) \ 0 & \mathit{otherwise} \end{cases}$$

As $\sum_{e \in E} x_e \le card\{E\}$ we can decide for $\lambda = card\{E\}$ as an upper value [3]

Example: G1



$$Q_{G_1} = \begin{bmatrix} -17 & 0 & 16 & 16 & 0 & 0 & 0 & 0 \\ 0 & -17 & 0 & 0 & 16 & 16 & 0 & 0 \\ 0 & 0 & -17 & 16 & 16 & 0 & 16 & 0 \\ 0 & 0 & 0 & -17 & 0 & 16 & 0 & 16 \\ 0 & 0 & 0 & 0 & -17 & 16 & 16 & 0 \\ 0 & 0 & 0 & 0 & 0 & -17 & 0 & 16 \\ 0 & 0 & 0 & 0 & 0 & 0 & -17 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -17 \end{bmatrix}$$

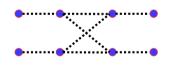
QUBO formulation

QUBO (for minimazation):

$$q_{\mathsf{ee}} = -1 - 2\lambda$$
 et $q_{\mathsf{ee'}} = egin{cases} 2\lambda & \mathsf{si} \ \exists v \in \mathit{N/e} \in \Gamma(v) \ \mathsf{and} \ e' \in \Gamma(v) \ \mathsf{otherwise} \end{cases}$

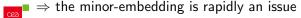
As $\sum_{e \in F} x_e \le card\{E\}$ we can decide for $\lambda = card\{E\}$ as an upper value [3]

Example: G1



$$Q_{G_1} = \begin{bmatrix} -17 & 0 & 16 & 16 & 0 & 0 & 0 & 0 \\ 0 & -17 & 0 & 0 & 16 & 16 & 0 & 0 \\ 0 & 0 & -17 & 16 & 16 & 0 & 16 & 0 \\ 0 & 0 & 0 & -17 & 0 & 16 & 0 & 16 \\ 0 & 0 & 0 & 0 & -17 & 16 & 16 & 0 \\ 0 & 0 & 0 & 0 & 0 & -17 & 0 & 16 \\ 0 & 0 & 0 & 0 & 0 & 0 & -17 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -17 \end{bmatrix}$$

■ When n grows, the number of edge per vertex increases linearly



Relevant parameters for improving the outcome

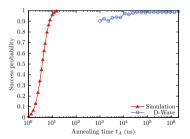
- In [3] the oldest architecture (Chimera), embedding constraints limited the achievable problems to G_4 in the best case (with at most 2000 qubits)
 - Little influence of any parameter on the outcome

Relevant parameters for improving the outcome

- In [3] the oldest architecture (Chimera), embedding constraints limited the achievable problems to G_4 in the best case (with at most 2000 qubits)
 - Little influence of any parameter on the outcome
- In [4] with JFZ, the architecture was extended to Pegasus (Advantage QPU) and Zephyr (Advantage-2 prototype)
 - We studied the influence of the annealing time τ
 - The count of qubits in the minor-embedding
 - The Relative Chain Strength (rcs) value

Relevant parameters for improving the outcome

- In [3] the oldest architecture (Chimera), embedding constraints limited the achievable problems to G_4 in the best case (with at most 2000 qubits)
 - Little influence of any parameter on the outcome
- In [4] with JFZ, the architecture was extended to Pegasus (Advantage QPU) and Zephyr (Advantage-2 prototype)
 - lacktriangle We studied the influence of the annealing time au
 - The count of qubits in the minor-embedding
 - The Relative Chain Strength (rcs) value

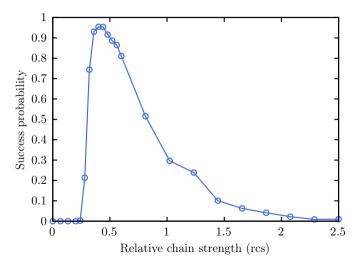


Comparing resolution of Schrodinger eq. on supercomputer vs D-Wave experiments (Advantage-2)

Different from theoretical but not relevant

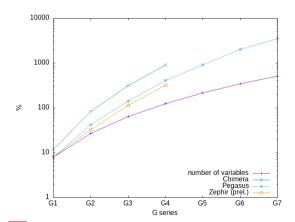
Impact of chain strength and minor-embedding

Relative Chain Strength must be well chosen to optimize the outcomes



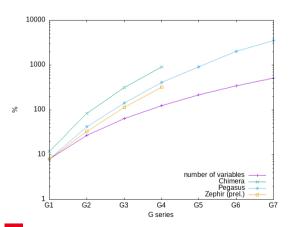
Impact of minor-embedding

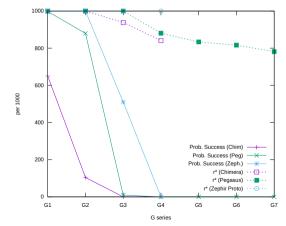
The number of qubits in the minor embedding should be reduced as much as possible to improve results



Impact of minor-embedding

The number of qubits in the minor embedding should be reduced as much as possible to improve results





How to evaluate the results in a platform-independent way?

How to evaluate the results in a platform-independent way?

- Differentiating QPU results from Random results:
 - Applying a threshold to probability with statistical significance above randomness
 - For low probability results ($p \le 10^{-4}$) the threshold is given at a significant 1% threshold (i.e. it is required to have at least 1000 non-filtrated samples)
 - For higher probability of random outcome a typical factor 10 is required, also with statistical significance.

How to evaluate the results in a platform-independent way?

- Differentiating QPU results from Random results:
 - Applying a threshold to probability with statistical significance above randomness
 - For low probability results ($p \le 10^{-4}$) the threshold is given at a significant 1% threshold (i.e. it is required to have at least 1000 non-filtrated samples)
 - For higher probability of random outcome a typical factor 10 is required, also with statistical significance.
- Cases where an exact solution is mandatory (e.g. LSS)
 - We apply the previous criterion on the probability of correct outcome

How to evaluate the results in a platform-independent way?

- Differentiating QPU results from Random results:
 - Applying a threshold to probability with statistical significance above randomness
 - For low probability results ($p \le 10^{-4}$) the threshold is given at a significant 1% threshold (i.e. it is required to have at least 1000 non-filtrated samples)
 - For higher probability of random outcome a typical factor 10 is required, also with statistical significance.
- Cases where an exact solution is mandatory (e.g. LSS)
 - We apply the previous criterion on the probability of correct outcome
- Cases where approximate solutions can be acceptable (e.g. Optimization problems)
 - Distance to optimum:
 - Hamming distance to optimum,
 - optimality score pondered by constraints violations

In the case of MCM (optimization problem we decided to mix both)

Definition of G score and weighted G score

■ The relative Hamming distance to the optimal solution

$$r_{H} = \frac{d_{H}}{(n+1)^{3}} \tag{3}$$

where d_H is the Hamming distance

W W W

Definition of G score and weighted G score

■ The relative Hamming distance to the optimal solution

$$r_H = \frac{d_H}{(n+1)^3} \tag{3}$$

where d_H is the Hamming distance

An evaluation of the optimality taking into account the invalidation of constrains into the best found solution:

$$r_d = \left(0, \frac{\mathcal{L} - f}{(n+1)^2}\right) \tag{4}$$

where \mathcal{L} is the number of links in this "best" solution and f being the number of failed constraints

Definition of G score and weighted G score

■ The relative Hamming distance to the optimal solution

$$r_{H} = \frac{d_{H}}{(n+1)^{3}} \tag{3}$$

where d_H is the Hamming distance

An evaluation of the optimality taking into account the invalidation of constrains into the best found solution:

$$r_d = \left(0, \frac{\mathcal{L} - f}{(n+1)^2}\right) \tag{4}$$

where \mathcal{L} is the number of links in this "best" solution and f being the number of failed constraints

• We define a ratio of optimality for the first "failed" G_n

$$r_o = \frac{1}{2}(1 - r_H + r_d) \tag{5}$$

G score results

We define a direct score and a weighted-score based on the probability of finding the optimal on the last "non-failed" G_n

$$S_G = (n_s + 1 + r_o)^3$$
 and $S_{Gw} = (n_s + 1 + r_o \times p_o)^3$ (6)

Table: Results on each recent generation of DWave QPUs

QPU architecture	ns	ro	S_G	p_o	S_{Gw}
DWave-2000Q (Chimera)	2	0.9375	61	84.9%	54.7
DWave Advantage (Pegasus)	3	0.904	116	1.8%	64.8
DWave Advantage-2-proto (Zephir)	3	0.936	122	11.0%	69.1

Section 3

Linear System Solving

Solving problem on D-Wave quantum annealers

To convey calculation on a D-Wave computer means finding a QUBO or Ising formulation whose minimum solves the initial problem

Solving problem on D-Wave quantum annealers

To convey calculation on a D-Wave computer means finding a QUBO or Ising formulation whose minimum solves the initial problem

Solving
$$A\mathbf{x} = m{b}$$
 where $A \in \mathcal{M}_n(\mathbf{R})$ and $m{b} \in \mathbb{R}^n$

$$i \in \{0, \dots, n-1\},$$
 $A_i.x - b_i = 0$

Solving problem on D-Wave quantum annealers

To convey calculation on a D-Wave computer means finding a QUBO or Ising formulation whose minimum solves the initial problem

Solving $A\mathbf{x} = \mathbf{b}$ where $A \in \mathcal{M}_n(\mathbf{R})$ and $\mathbf{b} \in \mathbb{R}^n$

$$i \in \{0, \cdots, n-1\},$$
 $\mathbf{A}_i.\mathbf{x} - b_i = 0$

If we define the cost function as the least square distance to 0:

$$C(\mathbf{x}) = \sum_{i=0}^{n-1} |\mathbf{A}_i.\mathbf{x} - b_i|^2$$
 (7)

Solving problem on D-Wave quantum annealers

To convey calculation on a D-Wave computer means finding a QUBO or Ising formulation whose minimum solves the initial problem

Solving $A\mathbf{x} = \mathbf{b}$ where $A \in \mathcal{M}_n(\mathbf{R})$ and $\mathbf{b} \in \mathbb{R}^n$

$$i \in \{0, \cdots, n-1\},$$
 $\mathbf{A}_i.\mathbf{x} - b_i = 0$

If we define the cost function as the least square distance to 0:

$$C(\mathbf{x}) = \sum_{i=0}^{n-1} |\mathbf{A}_i.\mathbf{x} - b_i|^2$$
 (7)

$$C(\mathbf{x}) \geq 0$$
 per definition

Solving problem on D-Wave quantum annealers

To convey calculation on a D-Wave computer means finding a QUBO or Ising formulation whose minimum solves the initial problem

Solving $A\mathbf{x} = \mathbf{b}$ where $A \in \mathcal{M}_n(\mathbf{R})$ and $\mathbf{b} \in \mathbb{R}^n$

$$i \in \{0, \dots, n-1\},$$
 $A_i.x - b_i = 0$

If we define the cost function as the least square distance to 0:

$$C(\mathbf{x}) = \sum_{i=0}^{n-1} |\mathbf{A}_i.\mathbf{x} - b_i|^2$$
 (7)

$$C(\mathbf{x}) \geq 0$$
 per definition and $C(\mathbf{x}) = 0 \iff \mathbf{x}$ solution of $A\mathbf{x} = \mathbf{b}$

Least square to QUBO, integer representation

N.B.: it is possible to solve non integer systems, but for benchmark, integers are fine

Least square to QUBO, integer representation

N.B.: it is possible to solve non integer systems, but for benchmark, integers are fine

SotA: Integer representation for least square QUBO formulation

$$\mathbf{x}_{i} = \sum_{i=0}^{r-1} x_{ij} 2^{j} - x_{ir} 2^{r} \tag{8}$$

Allows to express any integer in $\{-2^{r-1}, \dots, 2^{r-1} - 1\}$ (same as 2's complement)

Least square to QUBO, integer representation

N.B.: it is possible to solve non integer systems, but for benchmark, integers are fine

SotA: Integer representation for least square QUBO formulation

$$\mathbf{x}_{i} = \sum_{i=0}^{r-1} x_{ij} 2^{j} - x_{ir} 2^{r} \tag{8}$$

Allows to express any integer in $\{-2^{r-1}, \dots, 2^{r-1} - 1\}$ (same as 2's complement)

$$c_i(\mathbf{x}) = \left[\sum_{j=0}^{N-1} a_{ij} \left(\sum_{k=0}^{r-1} x_{jk} 2^k - x_{jr} 2^r \right) - b_i \right]^2 \quad \text{and} \quad \mathcal{C}(\mathbf{x}) = \sum_{j=0}^{n-1} c_j(\mathbf{x})$$
 (9)

 $\mathcal{C}(\mathbf{x})$ is quadratic, binary, its minimum is what we want= a QUBO problem

The higher order coefficients of the QUBO cost function: $\mathcal{M}(x) \propto 2^{2r} \sum_{i=0}^{n-1} x_{i,r}$

The higher order coefficients of the QUBO cost function: $\mathcal{M}(x) \propto 2^{2r} \sum_{i=0}^{n-1} x_{i,r}$

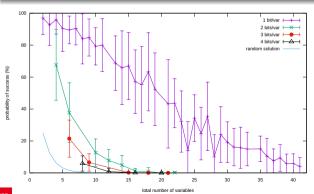
Non scalability issue

When the resolution r rises, the coefficients of the QUBO problem (or equiv. the Ising Hamiltonian) increase exponentially

The higher order coefficients of the QUBO cost function: $\mathcal{M}(x) \propto 2^{2r} \sum_{i=0}^{n-1} x_{i,r}$

Non scalability issue

When the resolution r rises, the coefficients of the QUBO problem (or equiv. the Ising Hamiltonian) increase exponentially

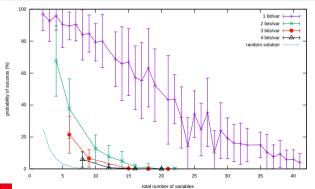


Results on DW-2000Q (the resolution on the couplers' setting is limited to about 10^{-3})

The higher order coefficients of the QUBO cost function: $\mathcal{M}(x) \propto 2^{2r} \sum_{i=0}^{n-1} x_{i,r}$

Non scalability issue

When the resolution r rises, the coefficients of the QUBO problem (or equiv. the Ising Hamiltonian) increase exponentially



Results on DW-2000Q (the resolution on the couplers' setting is limited to about 10^{-3})

The method is not scalable

Limiting to binary solutions (1 bit resolution) avoids the exponential problem

Best case scenario (albeit unrealistic)

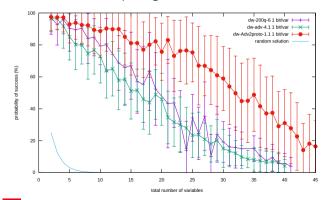
W W W

Limiting to binary solutions (1 bit resolution) avoids the exponential problem

- Best case scenario (albeit unrealistic)
- Allows to compare generations of DWave's machines

Limiting to binary solutions (1 bit resolution) avoids the exponential problem

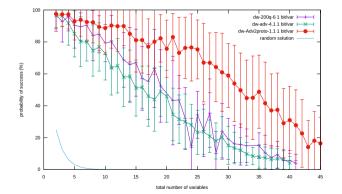
- Best case scenario (albeit unrealistic)
- Allows to compare generations of DWave's machines



And we can fit to a sigmoid $\Sigma(x) = \frac{1}{1+e^{-\lambda(x-x_0)}}$

Limiting to binary solutions (1 bit resolution) avoids the exponential problem

- Best case scenario (albeit unrealistic)
- Allows to compare generations of DWave's machines



And we can fit to a sigmoid $\Sigma(x) = \frac{1}{1+e^{-\lambda(x-x_0)}}$

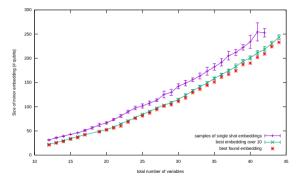
QPU generation	X _o
Chimera (dw-2000q)	20.1 ± 1.8
Pegasus (dw-advantage)	17.8 ± 0.8
Zephyr (advantage2-proto)	31.8 ± 0.8

Improving the results: tweaking the minor-embedding

Several parameters impact the quality of the results: focus on the minor-embedding problem

Improving the results: tweaking the minor-embedding

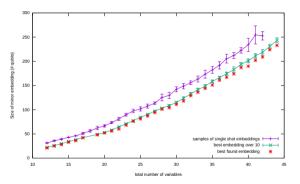
Several parameters impact the quality of the results: focus on the minor-embedding problem



Idea = running several time the embedding heuristic and select the best

Improving the results: tweaking the minor-embedding

Several parameters impact the quality of the results: focus on the minor-embedding problem



15 total number of variables

Idea = running several time the embedding heuristic and select the best

inflection point: $17.8 \pm 0.8 \longrightarrow 37.0 \pm 1.2$

Introduction on a simple example:

$$\begin{cases} X+Y+1=0\\ -X+Y+3=0 \end{cases}$$

Introduction on a simple example:

$$\begin{cases} X+Y+1=0\\ -X+Y+3=0 \end{cases}$$

Using 2's complement notation this time:

Introduction on a simple example:

$$\begin{cases} X+Y+1=0\\ -X+Y+3=0 \end{cases}$$

Using 2's complement notation this time: and new variables = carries

$$\begin{cases}
x_0 & +y_0 & +1 & -2c_0 = 0 \\
x_1 & +y_1 & +c_0 - 2c_1 = 0 \\
x_2 & +y_2 & +c_1 - 2c_2 = 0 \\
\hline
x_0 & +y_0 & +1 & -2c'_0 = 0 \\
x_0 & +x_1 & +y_1 & +1 & +c'_0 - 2c'_1 - 4c'_2 = 0 \\
x_0 & +x_1 & +x_2 & +y_2 & +c'_1 - 2c'_3 - 4c'_4 = 0
\end{cases} (10)$$

Introduction on a simple example:

$$\begin{cases} X+Y+1=0\\ -X+Y+3=0 \end{cases}$$

Using 2's complement notation this time: and new variables = carries

$$\begin{cases}
x_0 & +y_0 & +1 & -2c_0 = 0 \\
x_1 & +y_1 & +c_0 - 2c_1 = 0 \\
x_2 & +y_2 & +c_1 - 2c_2 = 0
\end{cases}$$

$$x_0 & +y_0 & +1 & -2c'_0 = 0 \\
x_0 & +x_1 & +y_1 & +1 & +c'_0 - 2c'_1 - 4c'_2 = 0 \\
x_0 & +x_1 & +x_2 & +y_2 & +c'_1 - 2c'_3 - 4c'_4 = 0
\end{cases}$$
(10)

And the cost function (QUBO problem):

$$C(X,Y) = (x_0 + y_0 + 1 - 2c_0)^2 + \dots + (x_0 + x_1 + x_2 + y_2 + c_1' - 2c_3' - 4c_0')^2$$

Pro:

■ No exponential explosion of QUBO coefficients

Pro:

- No exponential explosion of QUBO coefficients
- Transforming the system of equation into QUBO is only $\mathcal{O}(n^2)$

Pro:

- No exponential explosion of QUBO coefficients
- Transforming the system of equation into QUBO is only $\mathcal{O}(n^2)$
- Can hint at a potential polynomial advantage of QA (with a lot of unrealistic hypotheses)

W W W

Pro:

- No exponential explosion of QUBO coefficients
- Transforming the system of equation into QUBO is only $\mathcal{O}(n^2)$
- Can hint at a potential polynomial advantage of QA (with a lot of unrealistic hypotheses)
- It is straightforward to check that a solution is found

Cons:

- A sizable (albeit not unmanageable) number of auxiliary variables (the carries)
- The spectral gap of the target Hamiltonian is generally low (there are workarounds, e.g. larger annealing time)
- Avoiding spurious solutions requires to normalize the a_{ij} coefficients per line and check all the x_{ik} appear in the cost function

W W W

Pro:

- No exponential explosion of QUBO coefficients
- Transforming the system of equation into QUBO is only $\mathcal{O}(n^2)$
- Can hint at a potential polynomial advantage of QA (with a lot of unrealistic hypotheses)
- It is straightforward to check that a solution is found

Cons:

- A sizable (albeit not unmanageable) number of auxiliary variables (the carries)
- The spectral gap of the target Hamiltonian is generally low (there are workarounds, e.g. larger annealing time)
- Avoiding spurious solutions requires to normalize the a_{ij} coefficients per line and check all the x_{ik} appear in the cost function

Nonetheless, this provide the base of an utility measure of solving linear systems with QA. We choose a large probability of finding the solution e.g. 20%

W WW

Experimental results

	2 vars, 3bits/v		2 vars, 4bits/v		3 vars, 3bits/v		3 vars, 4bits/v	
	std	2's	std	2's	std	2's	std	2's
Adv-4.1	22.1±6.3%	21.2 ±25%	4.5±3.4%	2.7±3.3%	2.0%	2.9%	0.12%	≈ 0.01%
Adv2-proto $40\mu \mathrm{s}$ annealing	<u>na</u>	<u>na</u>	<u>na</u>	<u>na</u>	2.0%	2.7%	0.12%	0.19%
Adv2-proto 1ms annealing	25.3 ±21%	29.5 ±18 %	9.4 ±7.9 %	17.1±17%	1.9%	5.8%	0.25%	0.65%

Experimental results

	2 vars, 3bits/v		2 vars,	2 vars, 4bits/v		3 vars, 3bits/v		3 vars, 4bits/v	
	std	2's	std	2's	std	2's	std	2's	
Adv-4.1	22.1 ±6.3%	21.2 ±25%	4.5±3.4%	2.7±3.3%	2.0%	2.9%	0.12%	≈ 0.01%	
Adv2-proto	<u>na</u>	<u>na</u>	<u>na</u>	<u>na</u>	2.0%	2.7%	0.12%	0.19%	
40 μ s annealing									
Adv2-proto	25.3 ±21%	29.5 ±18 %	9.4 ±7.9%	17.1±17%	1.9%	5.8%	0.25%	0.65%	
1ms annealing									

Without further improvements, the results would be a utility level of 2 variables with 3 bits of resolutions for LSS on D-Wave QA

Experimental results

	2 vars, 3bits/v		2 vars, 4bits/v		3 vars, 3bits/v		3 vars, 4bits/v	
	std	2's	std 2's		std	2's	std	2's
Adv-4.1	22.1±6.3%	21.2 ±25%	4.5±3.4%	2.7±3.3%	2.0%	2.9%	0.12%	≈ 0.01%
Adv2-proto	<u>na</u>	<u>na</u>	<u>na</u>	<u>na</u>	2.0%	2.7%	0.12%	0.19%
40 μ s annealing								
Adv2-proto	25.3 ±21%	29.5±18%	9.4 ±7.9%	17.1±17%	1.9%	5.8%	0.25%	0.65%
1ms annealing								

Without further improvements, the results would be a utility level of 2 variables with 3 bits of resolutions for LSS on D-Wave QA

The results really point at a spectral gap issue

■ Next urgent step: mitigate the spectral gap issue and check if it improves

- Contrary to intuition, Quantum Annealing (and other Analog QC) can do LSS
- It is also possible to image a kind of (polynomial) Quantum Advantage
- We are not there yet: but lot of possible further improvements

- Contrary to intuition, Quantum Annealing (and other Analog QC) can do LSS
- It is also possible to image a kind of (polynomial) Quantum Advantage
- We are not there yet: but lot of possible further improvements
- We have a path to make the whole set of Application Benchmark pieces onto D-Wave QA:
 - Many-body computing
 - LLS, Prime factorization, constrained and unconstrained optimization (including Q-Score)
 - May later include later some form of QML

- Contrary to intuition, Quantum Annealing (and other Analog QC) can do LSS
- It is also possible to image a kind of (polynomial) Quantum Advantage
- We are not there yet: but lot of possible further improvements
- We have a path to make the whole set of Application Benchmark pieces onto D-Wave QA:
 - Many-body computing
 - LLS, Prime factorization, constrained and unconstrained optimization (including Q-Score)
 - May later include later some form of QML
- In less than 2 years, the BACQ consortium expects to provide Benchmark scores on a small subset of current QCs
 - Methodology, code and instances will be free to use to improve on the scores
 - We are open to discuss the relevance and improvements with tech providers or users

WWW

- Contrary to intuition, Quantum Annealing (and other Analog QC) can do LSS
- It is also possible to image a kind of (polynomial) Quantum Advantage
- We are not there yet: but lot of possible further improvements
- We have a path to make the whole set of Application Benchmark pieces onto D-Wave QA:
 - Many-body computing
 - LLS, Prime factorization, constrained and unconstrained optimization (including Q-Score)
 - May later include later some form of QML
- In less than 2 years, the BACQ consortium expects to provide Benchmark scores on a small subset of current QCs
 - Methodology, code and instances will be free to use to improve on the scores
 - We are open to discuss the relevance and improvements with tech providers or users

Future work:

- Improving the spectral gap in target Hamiltonian
 - Test if it improves the results
- Porting to other analog QCs:
 - Work should start in 2024Q4 for Pasgal QC

Merci

Thanks!

CEA SACLAY

91191 Gif-sur-Yvette Cedex

France

Standard. + 33 1 69 08 60 00