

Qubits or not qubits? State of the art of Fault Tolerant Quantum Computing in 2025

An Academy of Technology report presented by Gérard Roucairol and Olivier Ezratty

https://www.academie-technologies.fr/publications/

Academy of technology report scope (*)

Quantum Computing Paradigms

Classical computers

quantum inspired

quantum emulators

Analog quantum computers

quantum annealers

analog quantum simulators Digital quantum computers

gate-based

Noisy Intermediate
Scale Quantum

FTQC
Fault-Tolerant
Quantum

Computers

Universal, Reliable and Scalable Quantum Computer

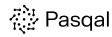
An Industry inspired Working Group

Steering committee

- Catherine Lambert (Cerfacs President)
- Thierry Bonhomme (former Orange Business Service EVP)
- Gérard Roucairol (former Bull Research EVP)
- Boris Bourdoncle General secretary
- Frédéric Barbaresco
- Philippe Duluc
- Marko Erman
- Olivier Ezratty
- Philippe Grangier
- Daniel Kaplan
- Jean-Claude Lehmann

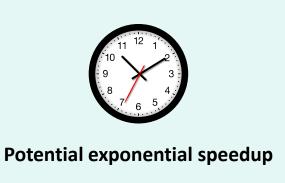
- Anthony Leverrier
- Frédéric Magniez
- Mazyar Mirrahimi
- Jean-Philippe Nominé
- Sophie Proust
- Claude Weisbuch

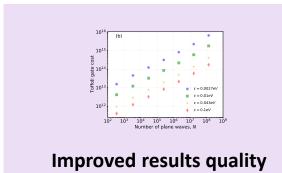
With the support of the French quantum ecosystem



Universities

Report main chapters


- 1. Quantum advantage and its needs
- 2. Error-correcting codes
- 3. Qubit technologies
- 4. Scalability
- 5. Complementary elements: economic analysis, competing technologies, benchmarking, HPC links, human capital, funding strategies.



Quantum Computing: benefits

and challenges

Expected benefits

However

Technology challenges

Few algorithms with an exponential speedup

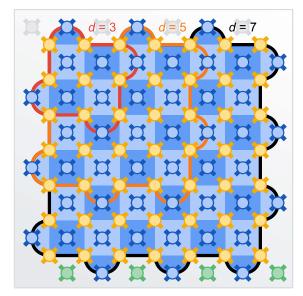
Compute intensive but *not* data intensive

Qubits sensitive to errors

Implementation overhead

Error correction: the key recent progress

Google Willow, bosonic qubits (Alice&Bob, Nord Quantique, AWS ...)


logical qubits

error rates ≈10⁻⁴ to ≈10⁻¹⁸

physical qubit

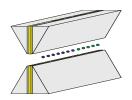
error rates ≈0.1%

error correction codes

qubits per logical qubits

fault tolerance (FTQC)

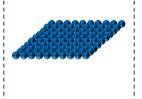
- correct errors faster than they are generated.
- avoid errors propagation.
- support a universal gate set.



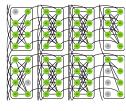
Many Qubit Technologies and many Actors

atoms

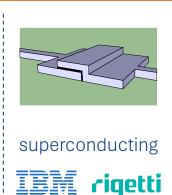
electrons controlled spin and microwave cavities



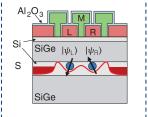
CRYSTAL



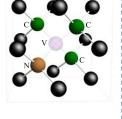
cold atoms

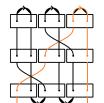


Atom Quantum Labs

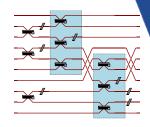

annealing

|X| Quam⊂ore **Z-Axis Quantum**




vacancies

topological



photons

Nobody's perfect

	atoms		electrons controlled spin and microwave cavities			photons
				AI_2Q_3 M B AI_2Q_3 M B	C C C	
	cold atoms	trapped ions	superconducting	silicon	NV centers	photons
operations fidelities						
gate times	with no shuttling					
qubit connectivity	with shuttling					
cooling needed	4K	4K	15 mK	≈500 mK	TBD	1.8 to 4K
qubit size						
scalability		with tiled chips				
A CARÉMIE						

Identified significant challenges

- Scaling qubits numbers, quality, connectivity and error correction
- Interconnecting quantum processors
- Enabling technologies
- Algorithms, software engineering and HPC FTQC hybridization
- Benchmarking methodology
- Competing classical technologies progress (AI, silicon, ...)
- Skills and funding

