Bridging the gap between High Performance (scientific) Computing and Quantum Computing

TERATEC SEMINAR, NOV 13, 2024

Marc Baboulin, Inria team QuaCS Collaboration with EVIDEN

3 reasons for **HPC not to be confident** with **Quantum**

Subject to errors, probabilistic results

01

Too many technologies

02

No standard in programming

3 reasons for **HPC to be enthousiast with Quantum**

01

Hybridization

02 03

Some theoretical advantage for VQE, HHL, QSVT...

Heterogeneity is now commonly addressed in HPC.

Speedup Energy Energy Energy efficiency

23MW for the exascale machine vs $10⁴$ times less for Google Sycamore.

A quantum view of the Top500

Performance development over time "converted" to error free qubits :)

LINPACK benchmark (Ax=b)

On the road to zettascale, Quantum can be a **game changer**

HPC for QC QC for HPC Linear algebra Partial Differential Equations AI/Clustering Quantum circuit synthesis Matrix decomposition Quantum simulation Some research interests in QC/HPC

Outline

What do we need as bricks for quantum scientific computing ?

Matrix decompositions

Encoding matrices into unitaries

Exploiting structures (sparsity, PDEs...)

Quantum Singular Value Transformation

Linear system solution

Iterative refinement

Scientific computing plays with matrices

Matrix Pauli matrices decomposition

We decompose a matrix in an appropriate basis in order to encode this matrix in a quantum memory.

$$
I=\begin{pmatrix}1&0\\0&1\end{pmatrix}, X=\begin{pmatrix}0&1\\1&0\end{pmatrix}, Y=\begin{pmatrix}0&-i\\i&0\end{pmatrix}, Z=\begin{pmatrix}1&0\\0&-1\end{pmatrix}
$$

Pauli operator basis

$$
{\cal P}_n = \left\{\bigotimes_n M_n, \ \ M_n \in \{I, X, Y, Z\}\right\}
$$

Decomposition in the Pauli basis

 $\text{ For } A \in \mathbb{C}^{2^n \times 2^n}, \; A =$

If A is Hermitian, the α_i 's are real numbers At most 4^n coefficients

$$
=\sum_{P_i\in\mathcal{P}_n}\alpha_iP_i, \text{ with } \alpha_i\in\mathbb{C}
$$

Straightforward method

$$
\text{If } A \in \mathbb{C}^{2^n \times 2^n}, \,\, \alpha_{M_1M_2 \ldots M_n} = \frac{1}{2^n} Tr\left(\left(\bigotimes_{i=1}^n M_i\right) \! A\right)\!, \text{whl}
$$

For each coefficient we have $n-1$ tensor products $(\mathcal{O}(2^n))$ and the trace of the product $(\mathcal{O}(2^n))$ and exploiting the specific structures of Pauli matrices $\longrightarrow \mathcal{O}(8^n)$ flops.

Existing implementations

Pauli decomposition

All of them are serial and in python. [Pesce, Stevenson. Pauli spin matrix decomposition of real symmetric matrices, 2021] [Hantzko, Binkowski, Gupta. Tensorized Pauli decomposition algorithm, 2024] [Romero, Santos-Suarez. Compute tensor products of Pauli matrices efficiently, 2023]

ere $M_i \in \{I, X, Y, Z\}.$

Exploit the similarity of information (structure, values) from one Pauli operator to another to reduce the number of elementary operations.

Fast Pauli decomposition [Koska, MB, Gazda, ISC 2024]

Time complexity:
$$
\frac{9}{7} + \frac{5}{7}8^n
$$
, memory: $\mathcal{O}(2^n)$.

*Bandwidth = $2s + 1$

Fast Pauli decomposition

Exploiting matrix structure

Order of magnitude for cost of Pauli decomposition:

Fast Pauli decomposition

Combinations of Pauli decompositions

Let
$$
A = \sum_{j} \alpha_{j} P_{j}
$$
, and $B = \sum_{j} \beta_{j} P_{j}$
\nDirect sum: $A \oplus B = \begin{bmatrix} A & 0 \ 0 & B \end{bmatrix} = I \otimes \sum_{j} \frac{\alpha_{j} + \beta_{j}}{2} P_{j} + Z \otimes \sum_{j} \frac{\alpha_{j} - \beta_{j}}{2} P_{j}$.
\nBlock-diagonal: $A_{N} = \begin{bmatrix} A_{1} & 0 \ 0 & A_{N} \end{bmatrix} = A_{N} = ((A_{1} \oplus A_{2}) \oplus (A_{3} \oplus A_{4})) \oplus ((A_{5} \oplus A_{6}) \oplus (A_{7} \oplus A_{8})) \text{ (}N = 8)$
\nLinear combination: $\mu A + B = \sum_{j} (\mu \alpha_{j} + \beta_{j}) P_{j}$.
\nMatrix multiplication: $A \times B = \sum_{j,k} \alpha_{j} \beta_{q} (P_{j} \times P_{q})$
\n \blacktriangleright Hermitian matrix augmentation: $\begin{bmatrix} 0 & A^{*} \\ A & 0 \end{bmatrix} = X \otimes \sum_{P_{j} \in P_{n}} a_{j} P_{j} + Y \otimes \sum_{P_{j} \in P_{n}} b_{j} P_{j}$, with $\alpha_{j} = a_{j} + ib_{j}$

Parallel performance

Strong scaling (15 qubits)

Multi-threaded code: The Pauli tree is split into forests of subtrees and each thread handles an independent part of the tree (no communication).

No errors due to the parallelization.

We don't need to store the input matrix (can be guessed via a function for instance).

Memory footprint: 2^n

Matrix size: 32768 (complex), Pauli trees in forest: 256.

Encoding matrices Block-encoding (BE) in quantum computers

Quantum computers only handle unitary matrices

- We want to encode $A\in\mathbb{C}^{2^n}\times\mathbb{C}^{2^n}$ in a unitary $U_A = \begin{bmatrix} A & \cdot \end{bmatrix}.$ Suppose such $U_A \in \mathbb{C}^{2^{n+1}} \times \mathbb{C}^{2^{n+1}}$ exits (one ancilla) $\text{then } U_A |0\rangle |x\rangle = \begin{bmatrix} Ax \ 0 \end{bmatrix} = |0\rangle A |x\rangle + |1\rangle |\psi\rangle \text{ and }$
- $\frac{Ax}{\|Ax\|}$ can be obtained upon measurement of qubit 0.
- Can be extended to m ancilla qubits with the relation $A = (\langle 0^m | \otimes I_N) U_A (|0^m \rangle \otimes I_N),$ and measurement of the m ancillas
	- This requires that $||A||_2 \leq 1$, or need for scaling.

Matrix blockencoding

See [Dong and Lin, 2021] for an application to linear system benchmarking similar to LINPACK.

An (α, m, ϵ) block-encoding of A is defined by $||A-\alpha(\langle 0^m||\otimes I_N)U_A(|0^m\rangle\otimes I_N)||_2\leq \epsilon \text{ with }\alpha,\epsilon\in\mathbb{R}_+.$

$$
\begin{aligned} &\nabla^{\dagger} \text{ with } \|A\|_2 \leq 1 \text{ then we have} \\ &A &W\sqrt{I_N - \Sigma^2} \\ &\boxed{N - \Sigma^2} V^{\dagger} & -\Sigma \end{aligned}.
$$

 \checkmark From random circuit U_A (Haar distribution) then $A = (\langle 0 | \otimes I) U_A (|0\rangle \otimes I)$ can be seen as the equivalent of a dense random matrix.

Examples

 \sqrt{F} For $A = W\Sigma V$ $U_A = \Bigg \lbrack \sqrt{I}$

Approximate BE

Block encoding via Pauli decomposition

Consider $A \in \mathbb{C}^{2^n \times 2^n}$ Hermitian with $M = 2^m$ Pauli operato

(if A not hermitian we can use the augmented matrix

To apply the matrix A to an n-qubit quantum state $|\psi\rangle_d$ we use the LCU method:

1. Allocate m ancilla qubits and prepare state $|\alpha\rangle_a = \frac{1}{\sqrt{\sum_i |\alpha|}}$

2. Apply V_i to the data state $\ket{\psi}_d$, controlled by the ancilla qubits in state \ket{i}_a $|i\rangle_a|\psi\rangle_d \rightarrow |i\rangle_a V_i|\psi\rangle_d$

3. Unprepare step 1.

$$
\text{ors: } A = \sum_{i=0}^{M-1} \alpha_i V_i, \; \alpha_i \in \mathbb{R} \\\\ \text{x} \; \tilde{A} = \begin{bmatrix} 0 & A^* \\ A & 0 \end{bmatrix} \text{).}
$$

$$
\overline{\overline{\chi_{i}}|}\, \sum_{i} \sqrt{|\alpha_{i}|} |i\rangle_{a}
$$

BE circuit from Pauli factors

Circuit for m=2

$$
\langle \rangle + \cdots = U_A (\vert 00 \rangle \vert \psi \rangle)
$$

=
$$
\frac{1}{\Vert \alpha \Vert_1} \begin{bmatrix} A & . \\ . & . \end{bmatrix}.
$$

Resulting state

 $\frac{1}{\|\alpha\|_1} |00\rangle A|\psi\rangle$

with U_A

Circuit

Comments on complexity

 \blacktriangleright If the number of ancillas is small, the main cost is the Pauli decomposition (exponential in n), which requires

- ◆ LSQ: complexity in T gates. T-count: $\mathcal{O}(2^m(nm + polylog(1/\epsilon)))$ Time complexity \propto T-count
- HPC resources.

NISQ: BE scales logarithmically with matrix dimension but circuit depth implies low fidelity due to successive errors.

Block-encoding Example: Poisson equation for PDE matrices

Finite difference method

$$
-\frac{1}{h^2}\begin{pmatrix}2&-1\\-1&2\\&\ddots\\0&&\text{for}\end{pmatrix}
$$

$$
c)=f,\ \forall x\in[0,1]
$$

 $\text{Boundary conditions}: u(0) = u(1) = 0$

We can exploit some specific structures of PDE matrices

[Ty, Vilmart et al., 2024]

Solving $u''(x)$

$$
{\bf L} = L_0 + L_1 = B_0 + P_1 B_1 P_1^{-1}
$$
 with $B_0 = I^{\otimes (n-1)} \otimes (I-X)$ and $B_1 = I^{\otimes n} + \frac{1}{2} P_1 ((I^{\otimes (n-1)} + C^{n-1}))$

 $\hspace{0.1 cm} P^{-2}Z) \otimes X)P_1^{-1}, \; P_1 \; {\rm permutation}.$

Obtaining the circuit for FD matrix

The tridiagonal matrix is decomposed into a sum of **2 block diagonal matrices** (potentially shifted) such that each is efficiently implementable using quantum operators. Can be generalized to band matrices.

Obtaining the circuit for FD matrix

 $\sqrt{\pi}$ #qubits : $n+3$ with $n = \log_2(N)$ depth: $\mathcal{O}(\log_2(n))$

Block-encoding of sparse matrices Example

Selecting nonzeros

$$
\begin{aligned} &\ _{A}:(i,j)\mapsto a_{ij}\\ &\hspace{0.2cm}\mathbf{(}\rightarrow\mathbf{b};\mathbf{(2,2)}\rightarrow\mathbf{c};\mathbf{(3,3)}\rightarrow\mathbf{d}\}\end{aligned}
$$

Selecting (i, j) such that $a_{ij} \neq 0$: $c:(j,l)\mapsto i$, where i is the row index that corresponds to the l -th nonzero entry in the j -th column $\{(0,0) \rightarrow 1; (1,0) \rightarrow 0; (2,0) \rightarrow 2; (3,0) \rightarrow 3\}$

Encoding nonzeros

 $\{(1,0) \rightarrow a; (0,1)\}$

[Camps et al., 2023]

Block-encoding for sparse matrices

Oracles for querying matrix entries

Selecting indices for nonzeros: $O_c|l\rangle|j\rangle=|l\rangle|c(j,l)\rangle$

(We must ensure reversibility of O_c)

Block-encoding

After construction of O_A and O_c (which depend on structure of A), A is encoded in $U_A = (I_2 \otimes H^{\otimes m} \otimes I_N)(I_2 \otimes O_c)O_A(I_2 \otimes H^{\otimes m} \otimes I_N)$

 $|l\rangle|j\rangle$

Nonzero entries of A:

$$
O_A |0\rangle |l\rangle |j\rangle = \big(a_{c(j,l),j}|0\rangle \ + \ \sqrt{1-|a_{c(j,l),j}|^2}|1\rangle\big)
$$

General access to A:

 $\text{With } \| A \|_{max} \ \leq 1, \ O_A | 0 \rangle | i \rangle | j \rangle = \left(a_{i,j} | 0 \rangle \ + \ \sqrt{ 1 - | a_{i,j} |^2 | 1 \rangle } \right) | i \rangle | j \rangle$

Generic algorithm, circuit automatically

Summary for matrices

Dense matrices

Sparse matrices

- generated.
- (+ classical cost).

Expensive to achieve on a NISQ computer

Low number of qubits and CNOT gates,

- adapted to NISQ.
- hand-designed.

Oracles depend on the matrix structure,

Then we need linear solvers

Eigenvalue decomposition and phase estimation.

Harrow-Hassidim-Lloyd (HHL)

Optimize a cost function representing the solution. More suited for NISQ architectures.

Variation Quantum Linear Solver

(VQLS)

Transform the singular values to their

inverse.

Quantum Singular Value Transformation (QSVT)

Linear system solvers

Ax=b

Quantum implementation From the block encoding $A = \tilde{\Pi} U \Pi$ we define an operator used to obtain the QSVT

Quantum Singular Value Transformation

- If $W\Sigma V^{\dagger}$ is the SVD of a matrix $A \in \mathbb{C}^{N \times N}$ and p is a polynomial of degree d with some constraints:
- Can be applied to linear system inversion, Hamiltonian

[Gilyen et al., 2019]

 $QSVT^p(A)=\begin{cases} Wp(\Sigma)V^\dagger, \text{ if } d \text{ is odd}\ Vp(\Sigma)V^\dagger, \text{ if } d \text{ is even} \end{cases}$

with $p(\Sigma) = diag(p(\sigma_1), \ldots, p(\sigma_N))$

simulation, Grover...

Idea

If $A = W\Sigma V^{\dagger}$, then $A^{\dagger} = V\Sigma W^{\dagger}$ and $A^{-1} = V\Sigma^{-1}W^{\dagger}$ If p approximates the function $x \to x^{-1}$ then $QSVT^p(A^{\dagger}) = Vp(\Sigma)W^{\dagger}$ approximates A^{-1}

QSVT for linear systems

Polynomial approximation of 1/x

The inverse function is approximated by an odd polynomial on $[-1,-1/\kappa] \cup [1/\kappa,1],$ $\text{starting from } f_{\epsilon,\kappa}(x) = \frac{1-(1-x^2)^b}{x}, \text{ with } b(\epsilon,\kappa) = \lceil \kappa^2 log(\kappa/\epsilon) \rceil.$

- **State preparation of right-hand side 1**
- **Block-encoding of 2**
- **Polynomial approximation of 1/x 3**
- **Convert polynomial to angles 4**
- **Create quantum circuit 5**
- **Run the circuit and post-processing 6**

QSVT for linear systems

Algorithm

Complexity

Queries to U_A : $\mathcal{O}(\kappa \log(\kappa/\epsilon))$ $+$ classical cost

Polynomial approximation of $1/x$ ($\kappa = 2$).

Iterative refinement

for linear systems (preliminary)

Principle

Solving $Ax = b$ corresponds to zeroing $f(x) = Ax - b$. Solution via Newton's algorithm at iteration $k+1$ is $(x_k)^{-1}.$ $f(x_k) \Leftrightarrow x_{k+1} = x_k + A^{-1}r_k.$ $= b - Ax_k$ (residual).

$$
x_{k+1} = x_k - f'(x_k \\ \text{with } r_k
$$

Algorithm in mixed precision

At each iteration k we do:

until desired precision is achieved.

- Solve $Ax = b$ to get x_0 (low precision) $\leftarrow \text{QPU}$
	- 1. $r_k \leftarrow b Ax_{k-1}$ (high precision)
	- 2. Solve $Ae_k = r_k$ (low precision)
	- 3. $x_k \leftarrow x_{k-1} + e_k$ (high precision)
- \leftarrow CPU $\leftarrow \text{QPU}$
- \leftarrow CPU

Iterative refinement for QSVT

Reduced precision at each iteration requires less samples.

Lower precision decreases the polynomial degree (then the number of RZ gates) and the number of call to BE(A).

 $QSVT +$ iterative refinement (accuracy) low precision = eps_QSVT, $\kappa = 2$

Less sampling

Less quantum resources

Quantum specifics

Right-hand side must be normalized: $A \frac{e_k}{||r_k||} = \frac{r_k}{||r_k||}$

 $u = \frac{e_k}{\|e_k\|} \text{ is recovered with } argmin_{\mu \in \mathbb{R}} |A(x + \mu u) - b|.$

Comments on solvers

Quantum advantage: people expect a lot from QC for HPC but this is still a research effort that `` might'' bring advantage.

Real cost of quantum algorithms should include: state preparation, interaction with classical machine, sampling, measurement...

Possible classical/quantum overlapping might

- improve this cost.
	- -

Always compare with the best classical counterpart and with same conditions:

- e.g., HHL: $s\kappa\mathcal{O}(\text{polylog}(N,log(1/\epsilon)))$
	- $CG: s\kappa\mathcal{O}(sN, \sqrt{\kappa}log(1/\epsilon)))$

Preconditioning is also possible.

Conclusion

What is needed to make Quantum a reality for high performance scientific computing

Community

We should promote a research community dedicated to linear algebra quantum algorithms.

Programming tools

We need accurate solutions to general scientific problems, even if it is not at scale for the moment.

Let's exploit the experience we have gained from CPU/GPU hybridization. See Q-Pragma by EVIDEN.

Accuracy