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3 reasons for HPC not to be
confident with Quantum

Subject to errors, Too many No standard in
probabilistic results technologies programming



3 reasons for HPC to be
enthousiast with Quantum

Speedup Hybridization Energy efficiency
Some theoretical advantage for Heterogeneity is now commonly 23MW for the exascale machine vs
VQE, HHL, QSVT.. addressed in HPC. 10* times less for Google Sycamore.






Quantum circuit synthesis Linear algebra

Matrix decomposition Partial Differential Equations

Quantum simulation Al/Clustering




Matrix decompositions

Encoding matrices into unitaries

Exploiting structures (sparsity, PDEs...)

Quantum Singular Value Transformation

Linear system solution

lterative refinement




Scientific computing
plays with matrices

300 [

400 [

400

300

200

100



Matrix

Pauli matrices

decomposition - 01 0 |
— 7X — 7Y — | . 7Z —
N o )= o) =( 0)7-(c
We decompose a matrix in an
appropriate basis in order to Pauli operator basis
encode this matrix in a quantum
memory. Pn = {@ M,, M,e{l,X,Y, Z}}

Decomposition in the Pauli basis

For Ac C*"*, A= ) a;P;, witha; € C
P;eP,

If A is Hermitian, the o;’s are real numbers

At most 4" coefficients

—1



Pauli decomposition

Straightforward method

If AeC*? aya,.. . m = —Tr ((@M) ),Where M; e {I,X,Y,Z}.

For each coefficient we have n — 1 tensor products (O(2")) and the trace of the product

(O(2™)) and exploiting the specific structures of Pauli matrices — O(8") flops.

Existing implementations

[Pesce, Stevenson. Pauli spin matrix decomposition of real symmetric matrices, 2021]

[Romero, Santos-Suarez. Compute tensor products of Pauli matrices efficiently, 2023]
[Hantzko, Binkowski, Gupta. Tensorized Pauli decomposition algorithm, 2024]

All of them are serial and in python.



Fast Pauli decomposition i«oska Mg, cazda, isc 2024)

/. Exploit the similarity of information (structure, values) from one Pauli
operator to another to reduce the number of elementary operations.

\/ I /X/I“Oot\y\ ) /@\
/N @

XYz : f LAY

ONO

Pauli tree In-order tree exploration

«~ Weupdate 2 vectors of C?", one for column indices and one for the nonzero values.

9 5
v Time complexity: - | 78”, memory: O(2").



Fast Pauli decomposition

Exploiting matrix structure

Order of magnitude for cost of Pauli decomposition:

#coeff flops
general 4” 8n
diagonal 2” 4’n

tridiagonal n2" n4"
band-diagonal* | (sm — ¢(s))2" sn4d"

xBandwidth = 2s + 1



Fast Pauli decomposition

Combinations of Pauli decompositions

Let A = Zaij, and B = Zﬂij
J J

. A 0 a;+ B; a; —Bi
Direct sum: A@B:[O B]:I®Z 32 Jpj+Z®Z 32 L Pj.
J

AL

Block-diagonal: A~ = = Ay = (410 4:) @ (430 A1) ) © (45 ® 46) © (47 ® Ag)) (N = 8)
AN

Linear combination: wA+B=) (ua;+ B;)P;.
7

Matrix multiplication: A x B= ) a;B,(P; x P,)
7,k

. : : 0 A* . .
Hermitian matrix augmentation: |, *, [=X® Y a;P;+Y® Y b;P;, witha; = a; +ib;
PjGPn PjEPn



Parallel performance

45 v/ Multi-threaded code: The Pauli tree is split
{ —@— Time (s) —&— GFlop/s
] === Ideal Time (s) -=- Ideal GFlop/s |-4.0 into forests of subtrees and each thread

35 handles an independent part of the tree

30 (no communication).

10° -
] No errors due to the parallelization.

Time (s)

e ~ We don't need to store the input matrix (can be
guessed via a function for instance).

10%

v/~ Memory footprint: 2"

I I ! I I I I
0 5 10 15 20 25 30
Threads

Strong scaling (15 qubits)

Matrix size: 32768 (complex), Pauli trees in forest: 256.



Encoding matrices Block-encoding (BE)

in quantum We want to encode A € C*' x C?" in a unitary

computers va= |4

Quantum computers only Suppose such Uy € C7 5 €2 exits (one ancilla)

handle unitary matrices then U 4(0)|z) — [Aw} — 0VA[z) + [1)[%) and
Az |

can be obtained upon measurement of qubit 0.

|Az|

Can be extended to m ancilla qubits with the relation
A=((0"QIN)UA(|0™) ® Iy),

and measurement of the m ancillas

This requires that ||A||2 < 1, or need for scaling.



Matrix block-
encoding

Approximate BE

An (a,m, €) block-encoding of A is defined by
| A —a((0™] @ In)Us(|0™) ® In)||2 < € with a,e € R,

Examples
For A = WXV with ||A||s < 1 then we have
A Wy/Iy — 22
Uy = .
Iy — 22V =

From random circuit U4 (Haar distribution)
then A = ((0| ® I)U4(|0) ® I) can be seen

as the equivalent of a dense random matrix.

See [Dong and Lin, 2021] for an application to
linear system benchmarking similar to LINPACK.



Block encoding via Pauli decomposition

M-1
Consider A € C**?" Hermitian with M = 2™ Pauli operators: A = Z o; Vi, a; € R
i=0
. .. .= |0 A"
(if A not hermitian we can use the augmented matrix A = A 0 ).

To apply the matrix A to an n-qubit quantum state |¢) ; we use the LCU method:

1
1. Allocate m ancilla qubits and prepare state |a) = Z ai|?),

Vi leu| 5
2. Apply V; to the data state |1¢) ;, controlled by the ancilla qubits in state |i),
i)al$) g = 1), Vi) 4

3. Unprepare step 1.



BE circuit from
Pauli factors

UnPrep|a) ,

Circuit
10) - 0 0
® Lo, | 1]
_ [ |
v Voo H Vo1 A Vio 0 Via

Resulting state

1

|l

Circuit for m=2

00) Alth) + - - - = U4(|00)]4))




Com ments On « NISQ: BE scales logarithmically with matrix dimension but
R circuit depth implies low fidelity due to successive errors.
complexity

</ LSQ: complexity in T gates.
T-count: O(2™(nm + polylog(1/e)))

Time complexity o« T-count

< If the number of ancillas is small, the main cost is the
Pauli decomposition (exponential in n), which requires
HPC resources.




BlOCk-encoding Example: Poisson equation
for PDE matrices ¢ i w2 = 7 vz c 0. 1]

We can exploit some specific Boundary conditions : u(0) = u(1) = 0
structures of PDE matrices

Finite difference method
[Ty, Vilmart et al., 2024]

Ui f1

1 | -1 2 U f2
—3 | =

—1 - -

0 1 92 ) \un In



Obtaining the circuit for FD matrix

The tridiagonal matrix is decomposed into a sum of 2 block diagonal matrices
(potentially shifted) such that each is efficiently implementable using quantum
operators. Can be generalized to band matrices.

Splitting (1 \ [ 0 )

1 1 -1

1

1
\ -1 1) \o 1)

\ - J/

" "Block diagonalization”

L=Ly+ L =By+PB P’

1
with By = I®" Y @ (I — X) and By = I®" + 5131((1@@("—1) +C"%Z)® X)P; !, P, permutation.



Obtaining the circuit for FD matrix

o o 1 H X~ X ——— H -
Circuit
H o— / ——0— [ -
1+ H ® H -
®
> e
-,
7 < E L E i n
Complexity

v/ #qubits : n + 3 with n = log, (V)

.~/ depth : O(log,(n))



Block-encoding of FExample

sparse matrices

[Camps etal., 2023]

06 0 0 Classical CSC format:
A — a 0 0 0 values: a, b, c,d

0 0 ¢ O row indices: 1,0, 2, 3

0 0 0 d col. pointers: 0,1, 2, 3

Encoding nhonzeros

OA : (Z,]) —> Q;;
{(1,0) = a;(0,1) — b;(2,2) — ¢;(3,3) — d}

Selecting nonzeros

Selecting (i, j) such that a;; # 0 :
c: (4,1) — i, where i is the row index that corresponds

to the [-th nonzero entry in the j-th column
{(0,0) — 1;(1,0) — 0;(2,0) — 2;(3,0) — 3}



Block-encoding for sparse matrices

Oracles for querying matrix entries

General access to A:
With [|Allmee < 1, 040)[i)]) = (aizl0) + /1 — laig[2[1)) [3)]3)
Nonzero entries of A:

040)[D17) = (ac(i4l0) + /1= lacia;

Selecting indices for nonzeros:
Oc|)|g) = [1)]e(4, 1))

(We must ensure reversibility of O,)

2[1)) [1)15)

Block-encoding

After construction of O 4 and O.(which depend on structure of A),
Aisencodedin Uy = (Is @ H*" @ In)(I2 ® 0.)0 (I, @ H®™ ® Iy)



Summary for Dense matrices

' '} Generic algorithm, circuit automatically

matriCes generated.

N\ Expensive to achieve on a NISQ computer
(+ classical cost).

Sparse matrices

) Low number of qubits and CNOT gates,
adapted to NISQ.

[ ] .
Oracles depend on the matrix structure,
/‘\ p

hand-designed.



Then we heed
linear solvers
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Linear system
solvers

Ax=Db

Harrow-Hassidim-Lloyd (HHL)

Eigenvalue decomposition and phase
estimation.

Variation Quantum Linear Solver

(VaLs)

Optimize a cost function representing the
solution. More suited for NISQ architectures.

Quantum Singular Value
Transformation (QSVT)

Transform the singular values to their
Inverse.



QSVT

Quantum Singular Value
Transformation

Principle [Gilyen et al., 2019]

If WXV is the SVD of a matrix A € CY*Y and p

is a polynomial of degree d with some constraints:

Wp(Z)V1, if dis odd
SVT?(A) = ’
< (4) {Vp(z:)vT, if d is even

with p(X) = diag(p(o1),...,p(on))

Can be applied to linear system inversion, Hamiltonian
simulation, Grover...

Quantum implementation

From the block encoding A = IIUTI we define
an operator used to obtain the QSVT

ane 7T T

N | o

data |




QSVT for linear systems

Idea
If A=WXV'! then AT=VEW'Tand A ! =VEZ W

If p approximates the function z — z ' then

QSVT?(A") = Vp(X)WT approximates A~

Polynomial approximation of 1/x

The inverse function is approximated by an odd polynomial on [—1,—1/x| U [1/k, 1],

: 1-(1-2%)" 2
starting from f. (z) = , with b(e, k) = [k°log(k/€)].
T




QSVT for linear systems
Algorithm

1 State preparation of right-hand side |b)
2 Block-encoding of A

3 Polynomial approximation of 1/x .. ,.f";
4 Convert polynomial to angles S
5 Create quantum circuit |
6 Run the circuit and pOSt-pI’OCESSing -1.00 -0.75 -0.50 -025 000 025 050 075 100
Polynomial approximation of 1/x (x = 2).
Complexity

Queries to Uy : O(k log(k/¢€))

1+ classical cost



Iterative
refinement

for linear systems
(preliminary)

Principle

Solving Ax = b corresponds to zeroing f(x) = Ax — b.

Solution via Newton’s algorithm at iteration k + 1 is

L+l = Tk — f’(wk)_l- f(zr) & Tp1 = o + A7l
with r, = b — Az (residual).

Algorithm in mixed precision

Solve Ax = b to get z( (low precision) +— QPU
At each iteration k we do:
1. 7 < b— Azp 1 (high precision) <+ CPU
2. Solve Aej, = r;, (low precision) < QPU
3.z < x_ 1+ ep (high precision) < CPU

until desired precision is achieved.



Iterative refinement for QSVT

Quantum specifics w01

eps_QSVT = 0.01
e —&— eps_QSVT = 0.001

e T 10

lrll 7l

Right-hand side must be normalized: A

U = ] kH is recovered with argmin cr|A(x + pu) — b|. E
€L s
E 1077 1
Less sampling
Reduced precision at each iteration requires less samples. T : ! ] ; : T
# lterations
QSVT + iterative refinement (accuracy)
LeSS quantum resources low precision = eps_QSVT, kK = 2

Lower precision decreases the polynomial degree (then the number of RZ gates)
and the number of call to BE(A).



Comments on
solvers

Quantum advantage: people expect a lot
fromm QC for HPC but this is still a research
effort that "might” bring advantage.

Real cost of quantum algorithms should include:
state preparation, interaction with classical
machine, sampling, measurement...

Possible classical/quantum overlapping might
Improve this cost.

Always compare with the best classical
counterpart and with same conditions:

e.g., HHL: skO(polylog(N,log(1/¢)))
CG: skO(sN,v/klog(1/¢€)))

Preconditioning is also possible.



Conclusion

What is heeded to make Quantum a reality for
high performance scientific computing

i g

Accuracy Community Programming tools
We need accurate solutions We should promote a Let's exploit the experience
to general scientific research community we have gained from
problems, even if it is not at dedicated to linear algebra CPU/GPU hybridization.

scale for the moment. quantum algorithms. See Q-Pragma by EVIDEN.



