
Bridging the gap between
High Performance (scientific) Computing
and Quantum Computing

TERATEC SEMINAR, NOV 13, 2024

Marc Baboulin, Inria team QuaCS
Collaboration with EVIDEN

3 reasons for HPC not to be
confident with Quantum

Subject to errors,
probabilistic results

01
Too many
technologies

02
No standard in
programming

03

3 reasons for HPC to be
enthousiast with Quantum

01
Hybridization

02 03
Speedup Energy efficiency
Some theoretical advantage for
VQE, HHL, QSVT...

Heterogeneity is now commonly
addressed in HPC.

A quantum view
of the Top500

Performance development over
time “converted” to error free
qubits :)

LINPACK benchmark (Ax=b)

19
93

19
97

2001
2005

2008
2011

2016
2021

2024
2030

2035
0

10

20

30

40

50

60

70

On the road to zettascale,
Quantum can be a game
changer

Multicore
GPU

QPU for zettascale ?

HPC for QC QC for HPC

Linear algebra

Partial Differential Equations

AI/Clustering

Quantum circuit synthesis

Matrix decomposition

Quantum simulation

Some research interests in QC/HPC

Outline
What do we need as bricks for
quantum scientific computing ?

Matrix decompositions

Encoding matrices into unitaries

Exploiting structures (sparsity, PDEs...)

Quantum Singular Value Transformation

Linear system solution

Iterative refinement

Scientific computing
plays with matrices

Pauli matricesMatrix
decomposition
We decompose a matrix in an
appropriate basis in order to
encode this matrix in a quantum
memory.

Pauli operator basis

Decomposition in the Pauli basis

Straightforward method

Existing implementations

Pauli decomposition

All of them are serial and in python.

[Pesce, Stevenson. Pauli spin matrix decomposition of real symmetric matrices, 2021]

[Hantzko, Binkowski, Gupta. Tensorized Pauli decomposition algorithm, 2024]
[Romero, Santos-Suarez. Compute tensor products of Pauli matrices efficiently, 2023]

Fast Pauli decomposition

Exploit the similarity of information (structure, values) from one Pauli
operator to another to reduce the number of elementary operations.

[Koska, MB, Gazda, ISC 2024]

Pauli tree In-order tree exploration

#coeff flops

general

diagonal

tridiagonal

band-diagonal*

Fast Pauli decomposition
Exploiting matrix structure

Order of magnitude for cost of Pauli decomposition:

Fast Pauli decomposition
Combinations of Pauli decompositions

Direct sum:

Block-diagonal:

Linear combination:

Matrix multiplication:

Hermitian matrix augmentation:

Parallel performance

Strong scaling (15 qubits)

Multi-threaded code: The Pauli tree is split
into forests of subtrees and each thread
handles an independent part of the tree
(no communication).
No errors due to the parallelization.

We don’t need to store the input matrix (can be
guessed via a function for instance).

Matrix size: 32768 (complex), Pauli trees in forest: 256.

Block-encoding (BE)Encoding matrices
in quantum
computers
Quantum computers only
handle unitary matrices

Matrix block-
encoding

See [Dong and Lin, 2021] for an application to
linear system benchmarking similar to LINPACK.

Examples

Approximate BE

Block encoding via Pauli decomposition

BE circuit from
Pauli factors

Circuit for m=2

Resulting state

Circuit

Comments on
complexity

LSQ: complexity in T gates.

If the number of ancillas is small, the main cost is the
Pauli decomposition (exponential in n), which requires
HPC resources.

NISQ: BE scales logarithmically with matrix dimension but
circuit depth implies low fidelity due to successive errors.

Example: Poisson equationBlock-encoding
for PDE matrices

Finite difference method

We can exploit some specific
structures of PDE matrices

[Ty, Vilmart et al., 2024]

Splitting

``Block diagonalization’’

Obtaining the circuit for FD matrix
The tridiagonal matrix is decomposed into a sum of 2 block diagonal matrices
(potentially shifted) such that each is efficiently implementable using quantum
operators. Can be generalized to band matrices.

Complexity

Obtaining the circuit for FD matrix

Circuit

Block-encoding of
sparse matrices

Selecting nonzeros

Example

Encoding nonzeros

[Camps et al., 2023]

Block-encoding for sparse matrices
Oracles for querying matrix entries

Block-encoding

Nonzero entries of A:

Selecting indices for nonzeros:

General access to A:

Generic algorithm, circuit automatically
generated.

Summary for
matrices

Dense matrices

Sparse matrices

Expensive to achieve on a NISQ computer
(+ classical cost).

Low number of qubits and CNOT gates,
adapted to NISQ.

Oracles depend on the matrix structure,
hand-designed.

Then we need
linear solvers

Eigenvalue decomposition and phase
estimation.

Harrow-Hassidim-Lloyd (HHL)

Optimize a cost function representing the
solution. More suited for NISQ architectures.

Variation Quantum Linear Solver
(VQLS)

Transform the singular values to their
inverse.

Quantum Singular Value
Transformation (QSVT)

Linear system
solvers

Ax=b

Principle QSVT
Quantum Singular Value
Transformation

Quantum implementation

[Gilyen et al., 2019]

Can be applied to linear system inversion, Hamiltonian
simulation, Grover...

Idea

QSVT for linear systems

Polynomial approximation of 1/x

 State preparation of right-hand side

Block-encoding of

Polynomial approximation of 1/x

Convert polynomial to angles

Create quantum circuit

Run the circuit and post-processing

1

2

4

3

5

6

QSVT for linear systems
Algorithm

Complexity

Iterative
refinement
for linear systems
(preliminary)

Principle

Algorithm in mixed precision

Iterative refinement for QSVT

Reduced precision at each iteration requires less samples.

Lower precision decreases the polynomial degree (then the number of RZ gates)
and the number of call to BE(A).

Less sampling

Less quantum resources

Quantum specifics

Comments on
solvers

Quantum advantage: people expect a lot
from QC for HPC but this is still a research
effort that ``might’’ bring advantage.

Real cost of quantum algorithms should include:
state preparation, interaction with classical
machine, sampling, measurement...
Possible classical/quantum overlapping might
improve this cost.

Always compare with the best classical
counterpart and with same conditions:

Preconditioning is also possible.

Conclusion
What is needed to make Quantum a reality for

high performance scientific computing

Community

We should promote a
research community

dedicated to linear algebra
quantum algorithms.

Programming tools

Let’s exploit the experience
we have gained from

CPU/GPU hybridization.
See Q-Pragma by EVIDEN.

Accuracy

We need accurate solutions
to general scientific

problems, even if it is not at
scale for the moment.

