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Why Quantum Machine Learning?

Can quantum algorithms solve machine learning problems?

Provable/comparable guarantees?
Speedup or any other advantage?
Control over quantum effects?




Why Quantum Machine Learning?

Can quantum algorithms solve machine learning problems?

Provable/comparable guarantees?
Speedup or any other advantage?
Control over quantum effects?

There is a strong link between ML and QC : Linear Algebra
There are different approaches to QML : Long Term & Short Term

A lot of theory is still needed to understand Advantages and Caveats .



Research publications
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Long Term vs Near Term

Long Term Near Term

10% qubit milestone: Error-corrected quantum computer
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10% qubit milestone: Error-corrected quantum computer

Tiles ¢ f
100x100 physical qubits

Google Quantum®

lonQ®

In the long term, Quantum provide a theoretical advantage
e Matrix Inversion (Ax = b)

* Linear Algebra (SVD, projections, inner product)

* Topology (distance estimation) etc.

Quantum Machine Learning will be provably faster
¢ Clustering, Neural Networks
* Recommendation Systems, SVM, etc.

Many Requirements
¢ Loading Data (QRAM), Error Correction, De-quantization



Long Term vs Near Term

Long Term Near Term

10% qubit milestone: Error-corrected quantum computer

modules

Tiles consist of
100x100 physical qubits

Google Quantum® lonQ®
In the long term, Quantum provide a theoretical advantage In the near term, several approaches exist
e Matrix Inversion (Ax = b)
* Linear Algebra (SVD, projections, inner product) Variational Quantum Circuits are used
* Topology (distance estimation) etc. * Require classical optimization of quantum gates
* Project data in large feature space
Quantum Machine Learning will be provably faster * Not many proof of advantage
¢ Clustering, Neural Networks * Gradients are vanishing
* Recommendation Systems, SVM, etc. e Expressivity could be reproduced classically
Many Requirements Easy to implement
¢ Loading Data (QRAM), Error Correction, De-quantization Unclear Scaling

Harder to interpret



Long Term QML



Long Term QML : A Recipe




Long Term QML : A Recipe

- Choose your favorite classical ML algorithm
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Long Term QML : A Recipe

Choose your favorite classical ML algorithm

Understand it at the linear algebra level

Input: The data set Y = {ys}5_, C RM

Input: Number of cluslcrs K

Output: Clusters: {Y ) o

Output: Cluster labels 1rr 1y L[l K]

// Initialization

710 3 // Iteration counter
foreach k € {1,..., K} do

// for k-th cluster

Initialize /120) and 220) suitably ; Set Yk(o) to empty set ;
end

repeat

// Segmentation:

foreach y; € Y do

L(k) | + ug mm ||ys (I)H

ﬂ( )3 assign ys to

G+ .
Y, )
end
// Estimation:

foreach k € {1,..., K} do

uf\& Wi mean(Y

(i+1)
X

end
1—1+1;
until the segmentation has stopped changing;




Long Term QML : A Recipe

Choose your favorite classical ML algorithm

Understand it at the linear algebra level

do — H — H
Imagine a quantum circuit that G - H |
- Loads the data 7 B

- Perform the same operations ™~ D o
- Retrieve the results from the Q state ¥ &

3

C =

Assuming many qubits
+ large depth circuits
+ error correction !



Long Term QML : A Recipe

- Choose your favorite classical ML algorithm
- Understand it at the linear algebra level
- Imagine a quantum circuit that

- Loads the data

- Perform the same operations

- Retrieve the results from the Q state

- Compare “speed” of C vs. Q

V > quant-ph > arXiv:1812.03584

Quantum Physics

[Submitted on 10 Dec 2018 (v1), last revised 11 Dec 2018 (this version, v2)]

g-means: A quantum algorithm for unsupervised machine learning
lordanis Kerenidis, Jonas Landman, Alessandro Luongo, Anupam Prakash

Quantum machine learning is one of the most promising applications of a full-scale quantum computer. Over the past fev
algorithms have been proposed that can potentially offer considerable speedups over the corresponding classical algorith
new quantum algorithm for clustering which is a canonical problem in unsupervised machine learning. The g-means algol
guarantees similar to k-means, and it outputs with high probability a good approximation of the k cluster centroids like t
d-dimensional vectors v; (seen as a matrix V € R™*¢) stored in QRAM, the running time of g-means is 0o (kd%n(v)(w
where %(V) is the condition number, p(V) is a parameter that appears in quantum linear algebra procedures and 1 = ma
— s
clusterable datasets, the running time becomes O (kzd% +k25g) per iteration, which is linear in the number of featt

maximum square norm 1) and the error parameter 8. Both running times are only polylogarithmic in the number of datapc
savings compared to the classical k-means algorithm that runs in time O(kdN) per iteration, particularly for the case of |z

Subjects: Quantum Physics (quant-ph); Machine Learning (cs.LG)
Cite as: arXiv:1812.03584 [quant-ph]
(or arXiv:1812.03584v2 [quant-ph] for this version)
https://doi.org/10.48550/arXiv.1812.03584 @

Journal reference: Advances in Neural Information Processing Systems 32 (NeurlPS 2019)

- If good : Claim “Q Advantage” but be honest about all the issues

|.Kerenids, JL, A.Luongo, A.Prakash: “g-means* NeurlPS 2019



Long Term QML
Where does the advantage come from?

1) Load data via Amplitude Encoding

computational basis

%) = %1]0 - 01) + %20+ 11) + -+ + x4|11 -+ 1)
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Exponentially small !

log(d) qubits




Long Term QML
Where does the advantage come from?

2) Compute in parallel
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C: Repeat N times

d,, d,, d,

d , d

40 N

Classical values

Q: All in 1 time

|d )+ [d,)+]d>+
)+ ... +]d)

Quantum state



Long Term QML : Main Issues

1) Loading the data in the quantum state is harder than you think
2) Extract the result from a quantum state is harder than you think

3) Quantum processes are random by nature, are you ok with it ?

Read the fine print

Scott Aaronson

commentary

New quantum algorithms promise an exponential speed-up for machine learning, clustering and finding
patterns in big data. But to achieve a real speed-up, we need to delve into the details.

has been catnip to science journalists.

Not only would a quantum computer
harness the notorious weirdness of quantum
mechanics, but it would do so for a
practical purpose: solving certain problems
exponentially faster than we know how to
solve them with any existing computer. But,

F or twenty years, quantum computing

HHL attacks one of the most basic
problems in all of science: solving a system of
linear equations. Given an 7 x n real matrix,
A, and a vector, b, the goal of HHL is to

(approximately) solve the system Ax =b for x,

and to do so in an amount of time that scales
only logarithmically with n, the number of
equations and unknowns. Classically, this

of interest, and then carefully analyses the

resulting performance against that of the

best-known classical algorithm for that case.
To my knowledge, so far there have

been two attempts to work out potential

applications of the HHL template from

start to finish. Clader, Jacobs, and Sprouse®

argued that HHL could be used to speed up

Scoftt Aaronson: “Read The Fine Print” Nature Physics 2015




Long Term QML

Matrix Multiplication / Inversion
Eigenvalues estimation
Amplitude Amplification

Distance Estimation

ML.:
Unsupervised Learning
Neural Networks
Graph Computations

Chemistry

Optimization



Near Term QML
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- Take a variational quantum circuit that looks like this
- Input your data (x) as parameters of some gates

Encoding
gate
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- Take a variational quantum circuit that looks like this
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- Hope that what you measure at the end is the right answer
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Near Term QML : A Recipe

Take a variational quantum circuit that looks like this

Input your data (x) as parameters of some gates

Hope that what you measure at the end is the right answer
Tune the trainable gates (8) until your hope becomes true

Trainable Encoding
gate gate




Near Term QML : What is going on?

Trainable Encoding
gate gate

A 10 =3 cu(®)e

we

It learns (exponentially large) Fourier Series

M. Schuld: “Supervised quantum machine learning models are kernel methods”



Near Term QML : What is going on?

Learning in Exponentially Large Spaces




Near Term QML : What is going on?

Learning in Exponentially Large Spaces

(a)Input space - map e »  (b)Feature space



Near Term QML : What is going on?

Learning in Exponentially Large Spaces

£\ a1 loader
L \%




Near Term QML : Main Issues

- Barren Plateaus: impossibility to train
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M. Larroca et al: “A Review of Barren Plateaus in Variational Quantum Computing”



Near Term QML : Main Issues

- Barren Plateaus: impossibility to train

- Classical Approximations

Training with Quantum Computer

}

10)®"—
Quantum Circuit Description ¥ 7
Data ‘ f
x,) '
x —_—
Training with Classical Approximation
X
Spectrum _. |Random Fourier
Extraction Features fN

JL, S.Thabet, C.Dalyac, H.Mhiri, E.Kashefi: “Classically Approximating Variational Quantum Machine Learning with Random Fourier Features” ICLR 2022



Alternative: Subspace Preserving QML

- Variational, low depth g circuits
- Reproduce Neural Networks rigorously
- Does not explore exponentially large spaces
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Trade off between:
- Loaders Feasibility
- Classical Approximations
- Barren Plateau

L.Monbroussou, E.Mamon, JL, A.Grilo, R.Kukla, E. Kashefi “Trainability and Expressivity of Hamming-Weight Preserving Quantum Circuits for Machine Learning”



Qonglusion

QML is not so simple to implement

Near / Long term are very different approaches

Devil is in the details

We might be surprise when Q Computers will be big enough

Meanwhile: keep doing research !
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