Quantum Machine Learning

TQCI Seminar

Jonas Landman Postdoctoral Research Associate - University of Edinburgh / LIP6

Why Quantum Machine Learning?

Can quantum algorithms solve machine learning problems?

Provable/comparable guarantees? Speedup or any other advantage? Control over quantum effects?

Why Quantum Machine Learning?

Can quantum algorithms solve machine learning problems?

Provable/comparable guarantees? Speedup or any other advantage? Control over quantum effects?

There is a strong link between ML and QC : Linear Algebra

There are different approaches to QML : Long Term & Short Term

A lot of theory is still needed to understand Advantages and Caveats 3

Research publications

Long Term vs Near Term

Long Term

Google Quantum[©]

Near Term

lonQ[©]

Long Term vs Near Term

Long Term

Google Quantum[©]

In the long term, Quantum provide a theoretical advantage

- Matrix Inversion (Ax = b)
- Linear Algebra (SVD, projections, inner product)
- Topology (distance estimation) etc.

Quantum Machine Learning will be provably faster

- Clustering, Neural Networks
- Recommendation Systems, SVM, etc.

Many Requirements

• Loading Data (QRAM), Error Correction, De-quantization

Near Term

lonQ[©]

Long Term vs Near Term

Long Term

In the long term, Quantum provide a theoretical advantage

- Matrix Inversion (Ax = b)
- Linear Algebra (SVD, projections, inner product)
- Topology (distance estimation) etc.

Quantum Machine Learning will be provably faster

- Clustering, Neural Networks
- Recommendation Systems, SVM, etc.

Many Requirements

• Loading Data (QRAM), Error Correction, De-quantization

Near Term

lonQ[©]

In the near term, several approaches exist

Variational Quantum Circuits are used

- Require classical optimization of quantum gates
- Project data in large feature space
- Not many proof of advantage
- Gradients are vanishing
- Expressivity could be reproduced classically

Easy to implement Unclear Scaling Harder to interpret

Long Term QML

- Choose your favorite classical ML algorithm

- Choose your favorite classical ML algorithm
- Understand it at the linear algebra level

```
Input: The data set Y = \{y_s\}_{s=1}^S \subset \mathbb{R}^M
Input: Number of clusters : K
Output: Clusters: \{Y_k^{(i)}\}_{k=1}^K
Output: Cluster labels array: L[1:K]
// Initialization
i \leftarrow 0:
                                                             // Iteration counter
foreach k \in \{1, \ldots, K\} do
       // for k-th cluster
       Initialize \mu_k^{(0)} and \Sigma_k^{(0)} suitably; Set Y_k^{(0)} to empty set;
end
repeat
       // Segmentation:
       foreach y_s \in Y do
             L(k) \leftarrow l \leftarrow \underset{k=1,...,K}{\arg\min} \|y_s - \mu_k^{(i)}\|_{\Sigma_k^{(i)}}^2; assign y_s to
                 Y_{l}^{(i+1)};
       end
       // Estimation:
       foreach k \in \{1, \ldots, K\} do
              \begin{array}{l} \mu_k^{(i+1)} \leftarrow \operatorname{mean}(Y_k^{(i+1)}); \\ \Sigma_k^{(i+1)} \leftarrow \operatorname{cov}(Y_k^{(i+1)}); \end{array} 
       end
       i \leftarrow i + 1;
until the segmentation has stopped changing;
```

- Choose your favorite classical ML algorithm
- Understand it at the linear algebra level
- Imagine a quantum circuit that
 - Loads the data
 - Perform the same operations
 - Retrieve the results from the Q state

Assuming many qubits + large depth circuits + error correction !

- Choose your favorite classical ML algorithm
- Understand it at the linear algebra level
- Imagine a quantum circuit that
 - Loads the data
 - Perform the same operations
 - Retrieve the results from the Q state

- Compare "speed" of C vs. Q

- If good : Claim "Q Advantage" but be honest about all the issues

arXiv > quant-ph > arXiv:1812.03584

Quantum Physics

[Submitted on 10 Dec 2018 (v1), last revised 11 Dec 2018 (this version, v2)]

q-means: A quantum algorithm for unsupervised machine learning

lordanis Kerenidis, Jonas Landman, Alessandro Luongo, Anupam Prakash

Quantum machine learning is one of the most promising applications of a full-scale quantum computer. Over the past few algorithms have been proposed that can potentially offer considerable speedups over the corresponding classical algorithm new quantum algorithm for clustering which is a canonical problem in unsupervised machine learning. The q-means algo guarantees similar to k-means, and it outputs with high probability a good approximation of the k cluster centroids like t d-dimensional vectors v_i (seen as a matrix $V \in \mathbb{R}^{N\times d}$) stored in QRAM, the running time of q-means is $\widetilde{O}\left(kd\frac{\eta}{\eta}; x(V)(\mu where x(V)) is the condition number, <math>\mu(V)$ is a parameter that appears in quantum linear algebra procedures and $\eta = ma$ clusterable datasets, the running time becomes $\widetilde{O}\left(k^2d\frac{\eta^2}{\eta}+k^2s\frac{\eta^2}{\eta}\right)$ per iteration, which is linear in the number of featur maximum square norm η and the error parameter δ . Both running times are only polylogarithmic in the number of datapparaxings compared to the classical k-means algorithm that runs in time O(kdN) per iteration, particularly for the case of iteration.

```
        Subjects:
        Quantum Physics (quant-ph): Machine Learning (cs.LG)

        Cite as:
        arXiv:1812.03584 (quant-ph)

        (or arXiv:1812.03584/2 (quant-ph) for this version)

        https://doi.org/10.48550/arXiv.1812.03584

        Journal reference:
        Advances in Neural Information Processing Systems 32 (NeurIPS 2019)
```

Long Term QML Where does the advantage come from?

1) Load data via Amplitude Encoding

log(d) qubits

Long Term QML Where does the advantage come from?

2) Compute in parallel

Long Term QML : Main Issues

1) Loading the data in the quantum state is harder than you think

2) Extract the result from a quantum state is harder than you think

3) Quantum processes are random by nature, are you ok with it?

Long Term QML

Matrix Multiplication / Inversion Eigenvalues estimation Amplitude Amplification Distance Estimation

. . .

ML: Unsupervised Learning Neural Networks Graph Computations

. . .

Chemistry

Optimization

. . .

. . .

Near Term QML

Near Term QML: A Recipe

Near Term QML : A Recipe

- Take a variational quantum circuit that looks like this

Near Term QML: A Recipe

- Take a variational quantum circuit that looks like this
- Input your data (*x*) as parameters of some gates

Near Term QML : A Recipe

- Take a variational quantum circuit that looks like this
- Input your data (*x*) as parameters of some gates
- Hope that what you measure at the end is the right answer

Near Term QML : A Recipe

- Take a variational quantum circuit that looks like this
- Input your data (*x*) as parameters of some gates
- Hope that what you measure at the end is the right answer
- Tune the trainable gates (θ) until your hope becomes true

Near Term QML : What is going on?

M. Schuld: "Supervised quantum machine learning models are kernel methods"

Near Term QML : What is going on? Learning in Exponentially Large Spaces

Near Term QML : What is going on? Learning in Exponentially Large Spaces

Near Term QML : What is going on? Learning in Exponentially Large Spaces

Near Term QML : Main Issues

- Barren Plateaus: impossibility to train

$$heta_{t+1} = heta_t - \eta
abla \mathcal{L}(heta)$$

Exponentially small value!

Х

M. Larroca et al: "A Review of Barren Plateaus in Variational Quantum Computing"

Near Term QML : Main Issues

- Barren Plateaus: impossibility to train
- Classical Approximations

JL, S.Thabet, C.Dalyac, H.Mhiri, E.Kashefi: "Classically Approximating Variational Quantum Machine Learning with Random Fourier Features" ICLR 2022

Alternative: Subspace Preserving QML

- Variational, low depth q circuits
- Reproduce Neural Networks rigorously
- Does not explore exponentially large spaces

Trade off between:

- Loaders Feasibility
- Classical Approximations
- Barren Plateau

L.Monbroussou, E.Mamon, JL, A.Grilo, R.Kukla, E. Kashefi "Trainability and Expressivity of Hamming-Weight Preserving Quantum Circuits for Machine Learning"

Qonqlusion

- QML is not so simple to implement
- Near / Long term are very different approaches
- Devil is in the details
- We might be surprise when Q Computers will be big enough
- Meanwhile: keep doing research !

Quantum Machine Learning

TQCI Seminar

Jonas Landman Postdoctoral Research Associate - University of Edinburgh / LIP6