

UNIVERSITÉ DE
Montpellier

Advances and Perspectives in Quantum Computing for Quantum Chemistry and Material Science

Bruno Senjean ICGM, Université de Montpellier, CNRS

November 12, 2024

Table of contents

[Quantum Chemistry: the electronic structure problem](#page-3-0)

[Quantum Computation](#page-11-0)

[Ground-state Chemistry on Quantum Computers](#page-18-0)

[Excited-state Chemistry on Quantum Computers](#page-27-0)

[Density Functional Theory on Quantum Computers](#page-33-0)

[Current Works and Perspectives ; Discussion on Quantum Advantage](#page-47-0)

Table of contents

[Quantum Chemistry: the electronic structure problem](#page-3-0)

[Quantum Computation](#page-11-0)

[Ground-state Chemistry on Quantum Computers](#page-18-0)

[Excited-state Chemistry on Quantum Computers](#page-27-0)

[Density Functional Theory on Quantum Computers](#page-33-0)

[Current Works and Perspectives ; Discussion on Quantum Advantage](#page-47-0)

MOLECULES TO MATERIALS

Hamiltonian operator for the total electronic energy of the system, $\hat{H} = \hat{T} + \hat{V}_{ne} + \hat{W}_{\text{ee}}$:

 \hat{H} = $-\sum_{i}$ ∇_i^2 $\overline{2}$ – $\sum_{i,I}$ *ZI* $\overline{|\mathbf{r}_i - \mathbf{R}_I|}$ ⁺ 1 $\overline{2} \sum_{i \neq j}$ **1** ∣**rⁱ** − **r^j** ∣ $\hat{H}|\Psi_n\rangle$ = $E_n|\Psi_n\rangle$, To difficult to solve !

Hamiltonian operator for the total electronic energy of the system, $\hat{H} = \hat{T} + \hat{V}_{ne} + \hat{W}_{\text{ee}}$:

 \hat{H} = $-\sum_{i}$ ∇_i^2 $\overline{2}$ – $\sum_{i,I}$ *ZI* ∣**r***ⁱ* − **R***^I* ∣ $\hat{H} | \Phi_0 \rangle = \mathcal{E}_0 | \Phi_0 \rangle$, Easy to solve !

MOLECULES TO MATERIALS

Hamiltonian operator for the total electronic energy of the system, $\hat{H} = \hat{T} + \hat{V}_{ne} + \hat{W}_{\text{ee}}$:

 \hat{H} = $-\sum_{i}$ ∇_i^2 $\overline{2}$ – $\sum_{i,I}$ *ZI* $|\mathbf{r}_i - \mathbf{R}_I|$ $\hat{H} | \Phi_0 \rangle = \mathcal{E}_0 | \Phi_0 \rangle$, Easy to solve !

 $\mathsf{Projected}$ onto a basis of N $\mathsf{spin-orbitals}$ $\{\phi^{\alpha}_p(\mathbf{r}),\phi^{\beta}_p(\mathbf{r})\}$

 $|\Phi_0\rangle$

MOLECULES TO MATERIALS

Hamiltonian operator for the total electronic energy of the system, $\hat{H} = \hat{T} + \hat{V}_{ne} + \hat{W}_{\text{ee}}$:

 \hat{H} = $-\sum_{i}$ ∇_i^2 $\overline{2}$ – $\sum_{i,I}$ *ZI* $\overline{|\mathbf{r}_i - \mathbf{R}_I|}$ ⁺ 1 $\overline{2} \sum_{i \neq j}$ **1** ∣**rⁱ** − **r^j** ∣ $\hat{H} |\Psi_n\rangle$ = $E_n |\Psi_n\rangle$, To difficult to solve !

 $\mathsf{Projected}$ onto a basis of N $\mathsf{spin-orbitals}$ $\{\phi^{\alpha}_p(\mathbf{r}),\phi^{\beta}_p(\mathbf{r})\}$

Non-interacting problem $|\Psi_0\rangle \rightarrow |\Phi_0\rangle$, $E_0 \rightarrow$ occ ∑ *i*=1 *εi* **Exponential Wall problem** $|\Psi_0\rangle$ = $\sum_{I} c_I |\Phi_I\rangle$ Exponential

Many-body basis 2/18

Occupation vector representation of the many-body basis (electronic configuration):

Many-body basis 2/18

Occupation vector representation of the many-body basis (electronic configuration):

Many-body basis 2/18

Occupation vector representation of the many-body basis (electronic configuration):

Build and diagonalize the Hamiltonian matrix:

$$
\begin{bmatrix}\n\langle \Phi_0 | \hat{H} | \Phi_0 \rangle & \cdots & \langle \Phi_0 | \hat{H} | \Phi_{2^N - 1} \rangle \\
\vdots & \ddots & \vdots \\
\langle \Phi_{2^N - 1} | \hat{H} | \Phi_0 \rangle & \cdots & \langle \Phi_{2^N - 1} | \hat{H} | \Phi_{2^N - 1} \rangle\n\end{bmatrix} \xrightarrow{\text{Diagonalization}} \begin{bmatrix}\nE_0 & & \mathbf{0} \\
\mathbf{0} & & E_{2^N - 1}\n\end{bmatrix}, |\Psi_0\rangle = \sum_{I}^{2^N} c_I |\Phi_I\rangle
$$

Table of contents

[Quantum Chemistry: the electronic structure problem](#page-3-0)

[Quantum Computation](#page-11-0)

[Ground-state Chemistry on Quantum Computers](#page-18-0)

[Excited-state Chemistry on Quantum Computers](#page-27-0)

[Density Functional Theory on Quantum Computers](#page-33-0)

[Current Works and Perspectives ; Discussion on Quantum Advantage](#page-47-0)

Superposition and Entanglement: Quantum bits 3/18

Classical bit to Quantum bit:

Superposition and Entanglement: Quantum bits 3 / 18

Classical bit to Quantum bit:

 $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle, \quad |\alpha|^2 + |\beta|^2 = 1$

Qubit register: **Superposition and Entanglement**

$$
\label{eq:psi} \left|\Psi\right\rangle=\sum_{q=0}^{2^N-1}c_q\left|q\right\rangle,\quad \sum_q|c_q|^2=1
$$

where $q = \{0, \dots, 2^N - 1\}$ are all possible bit-strings from *N* qubits

Encoding?

Quantum circuit: model of quantum computation $4/18$

Quantum circuit: model of quantum computation $4/18$

 $|\Psi\rangle = \frac{1}{\sqrt{8}} (|000\rangle + |001\rangle + |010\rangle + |011\rangle + |100\rangle + |101\rangle + |110\rangle + |111\rangle)$

Quantum circuit: model of quantum computation $4/18$

 $|\Psi\rangle = \frac{1}{\sqrt{8}} (|000\rangle + |001\rangle + |010\rangle + |011\rangle + |100\rangle + |101\rangle + |110\rangle + |111\rangle)$

Quantum circuit: model of quantum computation $4/18$

 $|\Psi\rangle = \frac{1}{\sqrt{8}} (1000\rangle + 1001\rangle + 1010\rangle + 1011\rangle + 1100\rangle + 1101\rangle + 1110\rangle + 1111\rangle)$

Table of contents

[Quantum Chemistry: the electronic structure problem](#page-3-0)

[Quantum Computation](#page-11-0)

[Ground-state Chemistry on Quantum Computers](#page-18-0)

[Excited-state Chemistry on Quantum Computers](#page-27-0)

[Density Functional Theory on Quantum Computers](#page-33-0)

[Current Works and Perspectives ; Discussion on Quantum Advantage](#page-47-0)

 $\hat{H} | \Psi_n \rangle = E_n | \Psi_n \rangle$ on quantum computers 5 / 18

$$
\begin{bmatrix}\n\langle \Phi_0 | \hat{H} | \Phi_0 \rangle & \cdots & \langle \Phi_0 | \hat{H} | \Phi_{2^N - 1} \rangle \\
\vdots & \ddots & \vdots \\
\langle \Phi_{2^N - 1} | \hat{H} | \Phi_0 \rangle & \cdots & \langle \Phi_{2^N - 1} | \hat{H} | \Phi_{2^N - 1} \rangle\n\end{bmatrix} \xrightarrow{\text{Diagonalization}} \begin{bmatrix}\nE_0 & & \mathbf{0} \\
\mathbf{0} & & E_{2^N - 1}\n\end{bmatrix}, |\Psi_0\rangle = \sum_{I}^{2^N} c_I |\Phi_I\rangle
$$

 $\hat{H} |\Psi_n\rangle = E_n |\Psi_n\rangle$ on quantum computers 5/18

$$
\begin{bmatrix}\n\langle \Phi_0 | \hat{H} | \Phi_0 \rangle & \cdots & \langle \Phi_0 | \hat{H} | \Phi_{2^N - 1} \rangle \\
\vdots & \ddots & \vdots \\
\langle \Phi_{2^N - 1} | \hat{H} | \Phi_0 \rangle & \cdots & \langle \Phi_{2^N - 1} | \hat{H} | \Phi_{2^N - 1} \rangle\n\end{bmatrix} \xrightarrow{\text{Diagonalization}} \begin{bmatrix}\nE_0 & & \mathbf{0} \\
\mathbf{0} & & E_{2^N - 1}\n\end{bmatrix}, |\Psi_0\rangle = \sum_{I}^{2^N} c_I |\Phi_I\rangle
$$

We don't want to:

- ▸ Build the Hamiltonian matrix (**exponentially costly to build**)
- ▸ Store the wavefunction (**exponentially costly to store**)

 $\hat{H} |\Psi_n\rangle = E_n |\Psi_n\rangle$ on quantum computers 5/18

$$
\begin{bmatrix}\n\langle \Phi_0 | \hat{H} | \Phi_0 \rangle & \cdots & \langle \Phi_0 | \hat{H} | \Phi_{2^N - 1} \rangle \\
\vdots & \ddots & \vdots \\
\langle \Phi_{2^N - 1} | \hat{H} | \Phi_0 \rangle & \cdots & \langle \Phi_{2^N - 1} | \hat{H} | \Phi_{2^N - 1} \rangle\n\end{bmatrix} \xrightarrow{\text{Diagonalization}} \begin{bmatrix}\nE_0 & & \mathbf{0} \\
\mathbf{0} & & E_{2^N - 1}\n\end{bmatrix}, |\Psi_0\rangle = \sum_{I}^{2^N} c_I |\Phi_I\rangle
$$

We don't want to:

- ▸ Build the Hamiltonian matrix (**exponentially costly to build**)
- ▸ Store the wavefunction (**exponentially costly to store**)

We want to:

▸ Extract the energies and molecular properties at **polynomial cost**

 $\hat{H} |\Psi_n\rangle = E_n |\Psi_n\rangle$ on quantum computers 5/18

$$
\begin{bmatrix}\n\langle \Phi_0 | \hat{H} | \Phi_0 \rangle & \cdots & \langle \Phi_0 | \hat{H} | \Phi_{2^N - 1} \rangle \\
\vdots & \ddots & \vdots \\
\langle \Phi_{2^N - 1} | \hat{H} | \Phi_0 \rangle & \cdots & \langle \Phi_{2^N - 1} | \hat{H} | \Phi_{2^N - 1} \rangle\n\end{bmatrix} \xrightarrow{\text{Diagonalization}} \begin{bmatrix}\nE_0 & & \mathbf{0} \\
\mathbf{0} & & E_{2^N - 1}\n\end{bmatrix}, |\Psi_0\rangle = \sum_{I}^{2^N} c_I |\Phi_I\rangle
$$

We don't want to:

- ▸ Build the Hamiltonian matrix (**exponentially costly to build**)
- ▸ Store the wavefunction (**exponentially costly to store**)

We want to:

▸ Extract the energies and molecular properties at **polynomial cost**

We can:

▸ Generate **exponentially many** electronic configurations with only *N* **qubits** through **superposition and entanglement**

Variational Quantum Eigensolver 6/18

Start with a very simple state

Variational Quantum Eigensolver $6/18$

State preparation:

 $|\Psi(\theta)\rangle$ = $U(\theta)|\Phi_0\rangle$

CHEMISTRY: MOLECULES TO MATERIALS

Variational Quantum Eigensolver 6/18

Rotations to the computational basis

Variational Quantum Eigensolver $6/18$

Measurements: Reconstruction of the energy

Classical optimization following the **variational principle**: find new *θ* parameters

Table of contents

[Quantum Chemistry: the electronic structure problem](#page-3-0)

[Quantum Computation](#page-11-0)

[Ground-state Chemistry on Quantum Computers](#page-18-0)

[Excited-state Chemistry on Quantum Computers](#page-27-0)

[Density Functional Theory on Quantum Computers](#page-33-0)

[Current Works and Perspectives ; Discussion on Quantum Advantage](#page-47-0)

Problematic: avoided-crossings, conical intersections $7/18$

Photoisomerisation of the retinal molecule

Conical intersection \rightarrow Point of degeneracy between the states

Requires a **DEMOCRATIC** description of the states

Ensemble $VQE¹$ 8 / 18

 1 Saad Yalouz et al. Quantum Sci. Technol. 6 024004 (2021)

Same approach than VQE

Ensemble $VQE¹$ 8 / 18

 1 Saad Yalouz et al. Quantum Sci. Technol. 6 024004 (2021)

But to a **ensemble** of states

Generalized variational principle

Example on a minimal Schiff base: formaldimine $9/18$

2D PES obtained by ensemble VQE

Towards excited-state quantum dynamics^{3,4} 10 / 18

▸ We are currently showing the ensemble VQE can lead to **quasi-diabatic states**²

²S. Illesova, M. Beseda, S. Yalouz, B. Lasorne, **BS**, to be submitted

³S. Yalouz, **BS** et al., Quantum Sci. Technol. 6, 024004 (2021)

⁴S. Yalouz, E. Koridon, **BS** et al. J. Chem. Theory Comput., 18, 776-794 (2022)

Table of contents

[Quantum Chemistry: the electronic structure problem](#page-3-0)

[Quantum Computation](#page-11-0)

[Ground-state Chemistry on Quantum Computers](#page-18-0)

[Excited-state Chemistry on Quantum Computers](#page-27-0)

[Density Functional Theory on Quantum Computers](#page-33-0)

[Current Works and Perspectives ; Discussion on Quantum Advantage](#page-47-0)

Mappings of the fully interacting problem $11/18$

Mappings of the fully interacting problem $11/18$

Density Functional Theory (DFT) 12/18

 \blacktriangleright (1964) Hohenberg–Kohn theorem: $n(\mathbf{r}) \leftrightarrow v(\mathbf{r}) \leftrightarrow \Psi_0$

$$
E_0[v] = \min_n E_v[n], \quad E_v[n] = F[n] + \int \mathrm{d}\mathbf{r} \, v(\mathbf{r}) n(\mathbf{r})
$$

The minimizing density is the **ground-state density** $n_0(\mathbf{r})$.

Density Functional Theory (DFT) 12/18

▸ (1964) Hohenberg–Kohn theorem: *n*(**r**) ←→ *v*(**r**) ←→ Ψ⁰

$$
E_0[v] = \min_n E_v[n], \quad E_v[n] = F[n] + \int \mathrm{d}\mathbf{r} \, v(\mathbf{r}) n(\mathbf{r})
$$

The minimizing density is the **ground-state density** $n_0(\mathbf{r})$.

▸ **Universal functional**: Levy–Lieb constrained search formalism

$$
F\bigl[n\bigr]=\min_{\Psi\to n}\{\bigl\langle\Psi\bigr|\,\hat{T}+\hat{\mathbf{W}}_{\text{ee}}\,\bigl|\Psi\bigr\rangle\}
$$

▸ The problem seems **even more complicated!**

Density Functional Theory (DFT) 12/18

▸ (1964) Hohenberg–Kohn theorem: *n*(**r**) ←→ *v*(**r**) ←→ Ψ⁰

$$
E_0[v] = \min_n E_v[n], \quad E_v[n] = F[n] + \int \mathrm{d}\mathbf{r} \, v(\mathbf{r}) n(\mathbf{r})
$$

The minimizing density is the **ground-state density** $n_0(\mathbf{r})$.

▸ **Universal functional**: Levy–Lieb constrained search formalism

$$
F\big[n\big] = \min_{\Psi \rightarrow n} \bigl\{ \bigl\langle \Psi\bigr| \, \hat{T} + \hat{\mathbf{W}}_\text{ee} \, \big| \Psi \bigr\rangle \bigr\}
$$

▸ The problem seems **even more complicated!** Decomposition:

 $F[n]$ = unknown = known + (unknown – known)

Kohn-Sham DFT $13 / 18$

▶ (1965) Kohn–Sham: noninteracting system with $n_s(\mathbf{r}) = n_0(\mathbf{r})$

$$
F[n] = T_s[n] + \mathbf{E}_{\text{Hxc}}[n], \quad T_s[n] = \min_{\Phi \to n} \{ \langle \Phi | \hat{T} | \Phi \rangle \}
$$

▸ Kohn–Sham self-consistent equations:

$$
\underbrace{\left(-\frac{\nabla^2}{2} + v(\mathbf{r}) + \frac{\delta \mathbf{E}_{Hxc}[\mathbf{n}_{\Phi^{KS}}]}{\delta \mathbf{n}(\mathbf{r})}\right)}_{\hat{h}^{KS}[\mathbf{n}_{\Phi^{KS}}]}\varphi_{\mathbf{k}}(\mathbf{r}) = \varepsilon_{\mathbf{k}}\varphi_{\mathbf{k}}(\mathbf{r}), \quad \mathbf{n}(\mathbf{r}) = 2\sum_{k=1}^{N_{\text{occ}}} |\varphi_{\mathbf{k}}(\mathbf{r})|^2
$$

Kohn-Sham DFT $13 / 18$

▶ (1965) Kohn–Sham: noninteracting system with $n_s(\mathbf{r}) = n_0(\mathbf{r})$

$$
F[n] = T_s[n] + \mathbf{E}_{\text{Hxc}}[n], \quad T_s[n] = \min_{\Phi \to n} \{ \langle \Phi | \hat{T} | \Phi \rangle \}
$$

▸ Kohn–Sham self-consistent equations:

$$
\underbrace{\left(-\frac{\nabla^2}{2} + v(\mathbf{r}) + \frac{\delta \mathbf{E}_{Hxc}[\mathbf{n}_{\Phi^{KS}}]}{\delta \mathbf{n}(\mathbf{r})}\right)}_{\hat{h}^{KS}[\mathbf{n}_{\Phi^{KS}}]}\varphi_{\mathbf{k}}(\mathbf{r}) = \varepsilon_{\mathbf{k}}\varphi_{\mathbf{k}}(\mathbf{r}), \quad \mathbf{n}(\mathbf{r}) = 2 \sum_{k=1}^{N_{\text{occ}}} |\varphi_{\mathbf{k}}(\mathbf{r})|^2
$$

 \blacktriangleright (in-principle-exact) Ground-state energy in $\mathcal{O}(N^3)$:

$$
E_0 = 2\sum_{k=1}^{N_{\rm occ}} \varepsilon_{\rm k} + E_{\rm Hxc}\left[n^{\Phi^{\rm KS}}\right] - \int \mathrm{d}\mathbf{r} \, v_{\rm Hxc}\left[n^{\Phi^{\rm KS}}\right] (\mathbf{r}) n^{\Phi^{\rm KS}} (\mathbf{r})
$$

Flowchart 14 / 18

Flowchart 14 / 18

Flowchart 14 / 18

DFT encoding $15/18$

 $\textbf{One-body non-int. Hamiltonian with } N \text{ spin-orbitals } \{|\chi_i \rangle\} \stackrel{\text{map}}{\longrightarrow} N \text{ qubits, classically simultaneously.}$

 $5N.P.D.$ Sawaya et al., npj Quantum Inf 6, 49 (2020).

⁶**BS**, S. Yalouz, M. Saubanère, SciPost Phys. 14, 055 (2023) ; Y. Shee et al. PRR 4, 023154 (2022)

DFT encoding $15/18$ $\mathbf{One-body}$ non-int. Hamiltonian with N spin-orbitals $\{|\chi_i \rangle\} \xrightarrow{\text{map}} \log_2(N)$ interacting qubits

 $5N.P.D.$ Sawaya et al., npj Quantum Inf 6, 49 (2020).

⁶**BS**, S. Yalouz, M. Saubanère, SciPost Phys. 14, 055 (2023) ; Y. Shee et al. PRR 4, 023154 (2022)

DFT encoding $15/18$

 $\mathbf{One-body}$ non-int. Hamiltonian with N spin-orbitals $\{|\chi_i \rangle\} \xrightarrow{\text{map}} \log_2(N)$ interacting qubits

 $5N.P.D.$ Sawaya et al., npj Quantum Inf 6, 49 (2020).

⁶**BS**, S. Yalouz, M. Saubanère, SciPost Phys. 14, 055 (2023) ; Y. Shee et al. PRR 4, 023154 (2022)

Table of contents

[Quantum Chemistry: the electronic structure problem](#page-3-0)

[Quantum Computation](#page-11-0)

[Ground-state Chemistry on Quantum Computers](#page-18-0)

[Excited-state Chemistry on Quantum Computers](#page-27-0)

[Density Functional Theory on Quantum Computers](#page-33-0)

[Current Works and Perspectives ; Discussion on Quantum Advantage](#page-47-0)

Current Works and Perspectives 16/18

About ensemble VQE:

- ▸ Non-adiabatic excited-state dynamics
- ▸ On-the-fly calculation of diabatic states

Current Works and Perspectives 16/18

About ensemble VQE:

- ▸ Non-adiabatic excited-state dynamics
- ▸ On-the-fly calculation of diabatic states

About Quantum-DFT:

- ▸ Extensions to time-dependent DFT
- ▸ Calculation of gradients to perform geometry optimization

Current Works and Perspectives 16/18

About ensemble VQE:

- ▸ Non-adiabatic excited-state dynamics
- ▸ On-the-fly calculation of diabatic states

About Quantum-DFT:

- ▸ Extensions to time-dependent DFT
- ▸ Calculation of gradients to perform geometry optimization

Quantum Embedding methods:

▸ Fragmenting the system and merging different methods

Discussions 17 / 18

About the 'Noisy Intermediate Scale Quantum' era:

- ▸ Is there room for VQE (and extensions)? (Z. Holmes ArXiv ; L. Bittel PRL 2021)
- ▸ Revival of old and intractable methods such as UCC in Quantum Chemistry
- ▸ Using qubit noise in quantum algorithms (C. Bertrand and many others for open systems)

Discussions 17 / 18

About the 'Noisy Intermediate Scale Quantum' era:

- ▸ Is there room for VQE (and extensions)? (Z. Holmes ArXiv ; L. Bittel PRL 2021)
- ▸ Revival of old and intractable methods such as UCC in Quantum Chemistry
- ▸ Using qubit noise in quantum algorithms (C. Bertrand and many others for open systems)

About the 'Fault-Tolerant' era:

- ▸ Is there room for QPE? (S. Lee, Nat. Commun. 2023)
- ▶ Is it achievable? $({\sim 10^{2} 10^{4}})$ logical qubits, ${\sim 10^{10} 10^{15}}$ Toffoli gates)

Discussions 17 / 18

About the 'Noisy Intermediate Scale Quantum' era:

- ▸ Is there room for VQE (and extensions)? (Z. Holmes ArXiv ; L. Bittel PRL 2021)
- ▸ Revival of old and intractable methods such as UCC in Quantum Chemistry
- ▸ Using qubit noise in quantum algorithms (C. Bertrand and many others for open systems)

About the 'Fault-Tolerant' era:

- ▸ Is there room for QPE? (S. Lee, Nat. Commun. 2023)
- ▶ Is it achievable? $({\sim 10^{2} 10^{4}})$ logical qubits, ${\sim 10^{10} 10^{15}}$ Toffoli gates)

Are we only looking to (asymptotic exponential) quantum advantage?

- ▸ Exponential, polynomial or constant factor advantage (G. Chan, arXiv:2407.11235)
- ▸ No advantage?... QC is a **new path** to explore the electronic structure problem

Acknowledgments and Collaborations on Quantum Computing 18 / 18

Q-DFT on Qudits

Klein

Guéry-Odelin

SA-00-VOE

Emiel Koridon

anr

O-DFT in BigDFT

Bruno

Peaudecerf

Deutsch

Rajamar Genovese

Schrieffer-Wolf & Embedding & DFT

Matthieu Sauhanère Emmanuel **Wafa** Makhlouf Fromager

Knapik

Vibrational/Vibronic

Benjamin Lasorne Scribano

Kind of everything...

Saad Yalouz

[https://gitlab.](https://gitlab.com/MartinBeseda/sa-oo-vqe-qiskit) [com/MartinBeseda/](https://gitlab.com/MartinBeseda/sa-oo-vqe-qiskit) [sa-oo-vqe-qiskit](https://gitlab.com/MartinBeseda/sa-oo-vqe-qiskit)

[https://github.](https://github.com/bsenjean/QDFT) [com/bsenjean/QDFT](https://github.com/bsenjean/QDFT)

PhD and Postdoc openings in LOMA (Bordeaux), ICGM (Montpellier) and LCQS (Strasbourg)

O'Brien

Reseda Illesova

Ouentin

Marécat

Extensions of SA-OO-VOE

Thank you for your attention

CHEMISTRY: MOLECULES TO MATERIALS

<mark>JNIVERSITÉ</mark> ¤
Montpellier

