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Electronic Structure Problem 1 / 18

Hamiltonian operator for the total electronic energy of the system, Ĥ = T̂ + V̂ne + Ŵee:

Ĥ = −∑
i

∇2
i

2
−∑

i,I

ZI

∣ri −RI ∣
+ 1

2∑i≠j

1
∣ri − rj∣

Ĥ ∣Ψn⟩ = En ∣Ψn⟩, To difficult to solve !

Projected onto a basis of N spin-orbitals {ϕα
p (r), ϕβ

p(r)}

∣Φ0⟩ ⋯ ∣ΦI⟩ ⋯ ∣ΦJ⟩ ⋯ ∣Φ2N−1⟩

Non-interacting problem

∣Ψ0⟩→ ∣Φ0⟩ , E0 →
occ
∑
i=1

εi

Exponential Wall problem

∣Ψ0⟩ =
Exponential
∑
I

cI ∣ΦI⟩
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Ĥ = −∑
i

∇2
i

2
−∑

i,I

ZI

∣ri −RI ∣
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Many-body basis 2 / 18
Occupation vector representation of the many-body basis (electronic configuration):

∣Φ0⟩ ⋯ ∣ΦI⟩ ⋯ ∣ΦJ⟩ ⋯ ∣Φ2N−1⟩

... ... ...

∣00110011⟩ , ∣01010011⟩ , ∣01010110⟩ , ∣11001100⟩

∣ϕβ
N/2,⋯, ϕβ

1 , ϕα
N/2,⋯, ϕα

1 ⟩ , ϕp = {
0 if empty
1 if occupied

Build and diagonalize the Hamiltonian matrix:

⎡⎢⎢⎢⎢⎢⎣

⟨Φ0∣ Ĥ ∣Φ0⟩ ⋯ ⟨Φ0∣ Ĥ ∣Φ2N−1⟩
⋮ ⋱ ⋮

⟨Φ2N−1∣ Ĥ ∣Φ0⟩ ⋯ ⟨Φ2N−1∣ Ĥ ∣Φ2N−1⟩

⎤⎥⎥⎥⎥⎥⎦

DiagonalizationÐÐÐÐÐÐÐÐ→
⎡⎢⎢⎢⎢⎢⎣

E0 0
⋱

0 E2N−1

⎤⎥⎥⎥⎥⎥⎦
, ∣Ψ0⟩ =

2N

∑
I

cI ∣ΦI⟩
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Superposition and Entanglement: Quantum bits 3 / 18
Classical bit to Quantum bit:

Qubit: a (two-)level system
Superposition

Qubit register:
Superposition and Entanglement

∣Ψ⟩ =
2N
−1
∑
q=0

cq ∣q⟩ , ∑
q

∣cq ∣2 = 1

where q = {0,⋯, 2N − 1} are all possible
bit-strings from N qubits

Encoding?
O(2N)
Classical

O(N)
Quantum
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Ĥ ∣Ψn⟩ = En ∣Ψn⟩ on quantum computers 5 / 18
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E0 0
⋱

0 E2N−1

⎤⎥⎥⎥⎥⎥⎦
, ∣Ψ0⟩ =

2N

∑
I

cI ∣ΦI⟩

We don’t want to:
▸ Build the Hamiltonian matrix (exponentially costly to build)
▸ Store the wavefunction (exponentially costly to store)

We want to:
▸ Extract the energies and molecular properties at polynomial cost

We can:
▸ Generate exponentially many electronic configurations with only N qubits through superposition

and entanglement
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Start with
a very

simple state



Variational Quantum Eigensolver 6 / 18

State preparation:

∣Ψ(θ)⟩ = U(θ) ∣Φ0⟩
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Rotations to the
computational basis



Variational Quantum Eigensolver 6 / 18

Measurements:
Reconstruction of the energy

Classical optimization following the
variational principle:
find new θ parameters
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Problematic: avoided-crossings, conical intersections 7 / 18

Photoisomerisation of the retinal molecule

O

O

Conical intersection → Point of
degeneracy between the states

Requires a
DEMOCRATIC description

of the states



Ensemble VQE1 8 / 18

Same approach than VQE

1Saad Yalouz et al. Quantum Sci. Technol. 6 024004 (2021)



Ensemble VQE1 8 / 18

But to a ensemble of states

Generalized variational principle

1Saad Yalouz et al. Quantum Sci. Technol. 6 024004 (2021)



Example on a minimal Schiff base: formaldimine 9 / 18
2D PES obtained by ensemble VQE



Towards excited-state quantum dynamics3,4 10 / 18

▸ We are currently showing the ensemble VQE can lead to quasi-diabatic states2

2S. Illesova, M. Beseda, S. Yalouz, B. Lasorne, BS, to be submitted
3S. Yalouz, BS et al., Quantum Sci. Technol. 6, 024004 (2021)
4S. Yalouz, E. Koridon, BS et al. J. Chem. Theory Comput., 18, 776-794 (2022)
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Density Functional Theory (DFT) 12 / 18
▸ (1964) Hohenberg–Kohn theorem: n(r)←→ v(r)←→ Ψ0

E0[v] =min
n

Ev[n], Ev[n] = F [n] + ∫ dr v(r)n(r)

The minimizing density is the ground-state density n0(r).

▸ Universal functional: Levy–Lieb constrained search formalism

F [n] = min
Ψ→n
{⟨Ψ∣ T̂ + Ŵee ∣Ψ⟩}

▸ The problem seems even more complicated! Decomposition:

F [n] = unknown = known + (unknown − known)
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Kohn-Sham DFT 13 / 18
▸ (1965) Kohn–Sham: noninteracting system with ns(r) = n0(r)

F [n] = Ts[n] +EHxc[n], Ts[n] = min
Φ→n
{⟨Φ∣ T̂ ∣Φ⟩}

▸ Kohn–Sham self-consistent equations:

(−∇
2

2
+ v(r) + δEHxc[nΦKS]

δn(r)
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ĥKS[nΦKS ]

φk(r) = εkφk(r), n(r) = 2
Nocc

∑
k=1
∣φk(r)∣2

▸ (in-principle-exact) Ground-state energy in O(N3):

E0 = 2
Nocc

∑
k=1

εk +EHxc[nΦKS
] − ∫ dr vHxc[nΦKS

](r)nΦKS
(r)
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DFT encoding 15 / 18
One-body non-int. Hamiltonian with N spin-orbitals {∣χi⟩}

mapÐÐ→ N qubits, classically simulatable

Basis set Unary5

Standard Binary6

one-body states 8 qubits

3 qubits6

∣χ0⟩ Ð→ ∣00000001⟩

Ð→ ∣000⟩

∣χ1⟩ Ð→ ∣00000010⟩

Ð→ ∣001⟩

∣χ2⟩ Ð→ ∣00000100⟩

Ð→ ∣010⟩

∣χ3⟩ Ð→ ∣00001000⟩

Ð→ ∣011⟩

∣χ4⟩ Ð→ ∣00010000⟩

Ð→ ∣100⟩

∣χ5⟩ Ð→ ∣00100000⟩

Ð→ ∣101⟩

∣χ6⟩ Ð→ ∣01000000⟩

Ð→ ∣110⟩

∣χ7⟩ Ð→ ∣10000000⟩

Ð→ ∣111⟩

ĥKS ∣φk⟩ = εk ∣φk⟩ Ð→ Ĥaux ∣φk⟩ = εk ∣φk⟩, k = 1, . . . , Nocc Ð→ Ensemble VQE

5N.P.D. Sawaya et al., npj Quantum Inf 6, 49 (2020).
6BS, S. Yalouz, M. Saubanère, SciPost Phys. 14, 055 (2023) ; Y. Shee et al. PRR 4, 023154 (2022)
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One-body non-int. Hamiltonian with N spin-orbitals {∣χi⟩}

mapÐÐ→ log2(N) interacting qubits

Basis set Unary5 Standard Binary6
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About ensemble VQE:
▸ Non-adiabatic excited-state dynamics

▸ On-the-fly calculation of diabatic states

About Quantum-DFT:
▸ Extensions to time-dependent DFT

▸ Calculation of gradients to perform geometry optimization

Quantum Embedding methods:
▸ Fragmenting the system and merging different methods
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About the ‘Noisy Intermediate Scale Quantum’ era:
▸ Is there room for VQE (and extensions)? (Z. Holmes ArXiv ; L. Bittel PRL 2021)
▸ Revival of old and intractable methods such as UCC in Quantum Chemistry
▸ Using qubit noise in quantum algorithms (C. Bertrand and many others for open systems)

About the ’Fault-Tolerant‘ era:
▸ Is there room for QPE? (S. Lee, Nat. Commun. 2023)
▸ Is it achievable? (∼ 102 − 104 logical qubits, ∼ 1010 − 1015 Toffoli gates)

Are we only looking to (asymptotic exponential) quantum advantage?
▸ Exponential, polynomial or constant factor advantage (G. Chan, arXiv:2407.11235)
▸ No advantage?... QC is a new path to explore the electronic structure problem
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Thank you for your attention
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