

00

Superconducting qubit based on a single molecule The nanotube gatemon

Jean-Damien PILLET - QCMX Lab - PMC Professeur à l'Ecole Polytechnique

Where we are

QCMX Lab PMC, X

Bâtiment 83 1^{er} étage 83-20-20

J.-D. Pillet

L. Bretheau

At the beginning, there was... two empty rooms and two physicists.

Construction work (masonry, plumbing, electricity)

The QCMX Lab (2019)

Cryogen-free dilution refrigerator (7 mK) + E

+ Electronics instruments

The QCMX Lab (2021)

2nd Cryostat (10 mK, 1T / 1T / 3T, bottom loader)

Preparation room

Wirebonding machine + fume hood

Microscope + workshop + soldering

Furnace & gaz handling system

Carbon Nanotube Platform: Optical Characterization + Transfer

Supercontinuum laser, spectrometer, transfer station

Everton Arrighi Maxime Hantute Landry Bretheau Hannes Riechert Joël Griesmar Samy Annabi Jean-Damien Pillet Hadrien Duprez

Crédit: J. Barande

Hybrid Josephson junctions

Perfectly crystalline quantum conductor (graphene, carbon nanotube, nanowires...)

Hexagonal lattice of carbon atoms

- Perfect crystalline coumpound
- Very few degrees of freedom
- Good electrical conductor
- Fundamentally interesting

16

QCMX CNT-platform

Growth

Characterization

Integration by transfer

Furnace (~1000 °C) + Ar / H2 / CH4 flow

Using hexagonal Boron Nitride (hBN) as a perfectly crystalline substrate

From Andreas Paul Gottscholl PhD thesis

Help from: F. Cadiz, S. Park (LPMC), R. Ribeiro (C2N), A. Vecchiola (CNRS-THALES), AdN SPEC (CEA Saclay), Watanabe & Taniguchi

hBN

21

Ultraclean CNT-based superconducting devices

23

Nanotube gatemon Gate tunable qubit

 $E_J \sim \varphi_0 I_c$ $\omega_q \approx \sqrt{8E_C E_J}$

cQED architecture

Qubit frequency

Rabi oscillations

Coherent oscillations between ground and excited state

Rabi oscillations

Coherent oscillations between ground and excited state

Coherent control

 $T_1 = (191 \pm 2) \,\mathrm{ns}$

Coherent control

Increasing E_J/E_C decreases charge sensitivity

There is no hard limit on E_J/E_C \Rightarrow We can increase T_2^* further !

We gain one order of magnitude on T_2^* on the first attempt Still limited by charge noise...

We gain one order of magnitude on T_2^* on the first attempt Still limited by charge noise...

Quentin Schaeverbeke's talk

We gain one order of magnitude on T_2^* on the first attempt Still limited by charge noise...

A lot of room for improvement

- Increase E_J/E_C
- Full hBN encapsulation
- Screen Si substrate with a bottom gate

 \Rightarrow Adjust design and nanofab

Nanotube qubits with ultraclean nanotube

