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computer

[NGST/SUNY-Stony Brook/JPL (2002)]
FLUX-1R1: 65759 Josephson junctions

main challenges are reliable memory and scaling up

Rapid single flux quantum (RSFQ) circuit

courtesy of Nobuyuki Yoshikawa
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computer

[NGST/SUNY-Stony Brook/JPL (2002)]
FLUX-1R1: 65759 Josephson junctions D-Wave Advantage: 5000 qubits 

(2021)

quantum annealer

«quantum computer» 
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classical computer

[NGST/SUNY-Stony Brook/JPL (2002)]
FLUX-1R1: 65759 Josephson junctions D-Wave Advantage: 5000 qubits 

(2021)

quantum annealer gate based 
quantum processor

IBM Condor: 1121 qubits 
(2023)
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chosen by design

EL =
ℏ2

4e2L

EJ EC =
e2

2C

set by nature
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chosen by design
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EJ EC =
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2C

set by nature

extended version of [Kjaergaard et al., Annual Reviews of Condensed Matter Physics 2020]
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Fast gates, fast readout, fast reset (order of magnitude: 1-100 ns)

 errors per gate in 30 ns1 × 10−3
two qubit gates

[Sung et al. (MIT), PRX 2021]

 errors per readout in 60 ns2 × 10−3

[Spring et al. (RIKEN), arXiv:2409.04967]

 errors per gate in <10 ns2 × 10−5

[Rower et al. (MIT), arXiv:2406.08295]

single qubit gates

readout
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Fast gates, fast readout, fast reset (order of magnitude: 1-100 ns)

Fabrication process not too far from CMOS

Dissipation and Hamiltonian can be engineered at will

[E. Flurin’s microwave photon detector

PRX 2020]
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Fast gates, fast readout, fast reset (order of magnitude: 1-100 ns)

Fabrication process not too far from CMOS

Dissipation and Hamiltonian can be engineered at will

The qubits stay in place: no need to fight against atoms/ions escaping traps 

Logical qubit already demonstrated (beyond break-even and below threshold)

Built-in error correction for some qubits (cat qubits, GKP, fluxonium…)

[Marquet et al. (Lyon and A&B), PRX 2024]
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Reaching error rates below 10-6

[Google Quantum AI, arXiv:2408.13687]
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Reaching error rates below 10-6

Cross-talk between control lines

[Delft Circuits]

[D. Yost et al. (MIT), npj QI 2020]

[Alice&Bob]

no cross-talk but

low density

bad cross-talk but

high density

on chip cross-talk

bridges, flip-chip, through silicon vias…?
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Chip to chip connectivity 

Reaching error rates below 10-6

Cross-talk between control lines

[Jingjing Niu et al. (Shenzhen), Nature Electronics 2023]

1% transfer error
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Mitigating cosmic rays and parasitic Two Level Systems (TLS)

Chip to chip connectivity 

Reaching error rates below 10-6

Cross-talk between control lines

30x less bursts of quasiparticles below 1400m of rock 
[Cardani et al. (KIT), Nat. Comm. 2021]

Is superconducting gap engineering enough?
[Google Quantum AI, arXiv:2402.15644]

[Lisenfeld et al. (KIT), npj QI 2019]
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Mitigating cosmic rays and parasitic Two Level Systems (TLS)

Chip to chip connectivity 

Addressing power requirements (amount and heat removal)

Reaching error rates below 10-6

Microwave driving millions of lines at 10 mK

Cross-talk between control lines

[Delft Circuits]

[O. Mukhanov et al. (SeeQC), IEEE IEDM 2019]
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Mitigating cosmic rays and parasitic Two Level Systems (TLS)

Chip to chip connectivity 

Cooling down >105 logical qubits: need for new refrigerators?

Addressing power requirements (amount and heat removal)

Reaching error rates below 10-6

Microwave driving millions of lines at 10 mK

Cross-talk between control lines

[KIDE fridges by Bluefors] [IBM]



Main challenges in front of us
21

Mitigating cosmic rays and parasitic Two Level Systems (TLS)

Chip to chip connectivity 

Cooling down >105 logical qubits: need for new refrigerators?

Addressing power requirements (amount and heat removal)

Reaching error rates below 10-6

Benefitting from LDPC codes while it is hard to implement long-distance connectivity

Microwave driving millions of lines at 10 mK

Cross-talk between control lines

n qubits encode k logical qubits with distance d (number of tolerable errors)
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Mitigating cosmic rays and parasitic Two Level Systems (TLS)

Chip to chip connectivity 

Cooling down >105 logical qubits: need for new refrigerators?

Addressing power requirements (amount and heat removal)

Reaching error rates below 10-6

Benefitting from LDPC codes while it is hard to implement long-distance connectivity

Making the best out of the hardware in algorithm design

Microwave driving millions of lines at 10 mK

Environmental impact

Cross-talk between control lines
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