

Benjamin Huard Ecole Normale Supérieure de Lyon, France

Superconducting quantum processors What are the challenges ahead?

Scientific advisor to

[KIDE fridges by Bluefors]

Superconducting computers

computer

FLUX-1R1: 65759 Josephson junctions [NGST/SUNY-Stony Brook/JPL (2002)]

Rapid single flux quantum (RSFQ) circuit

T Flip-flop operating at up to 770 GHz.

W. Chen et al., IEEE Trans. Appl. Supercond. 9, 3212-3215 (1999).

256-b shift register operating at 12 GHz O. Mukhanov et al., IEEE Trans. Appl. Supercond 3, 2578-2581 (1993).

YNU YOKOHAMA National University

main challenges are reliable memory and scaling up

courtesy of Nobuyuki Yoshikawa

Superconducting computers

quantum annealer

computer

FLUX-1R1: 65759 Josephson junctions [NGST/SUNY-Stony Brook/JPL (2002)]

D-Wave Advantage: 5000 qubits (2021)

Superconducting computers

gate based quantum processor

IBM Condor: 1121 qubits (2023)

set by nature

chosen by design

Superconducting circuits

Evolution of coherence times without error correction

extended version of [Kjaergaard et al., Annual Reviews of Condensed Matter Physics 2020]

single qubit gates

 2×10^{-5} errors per gate in <10 ns [Rower et al. (MIT), arXiv:2406.08295]

two qubit gates

 1×10^{-3} errors per gate in 30 ns [Sung et al. (MIT), PRX 2021]

Fast gates, fast readout, fast reset (order of magnitude: 1-100 ns)

 2×10^{-3} errors per readout in 60 ns [Spring et al. (RIKEN), arXiv:2409.04967]

Fig. 1 | Fabrication of overlap JJ qubit. a, Photograph of the 300 mm wafer. section of the junction (dashed line in c). e, Schematic representation of the key **b**, Photograph of one die with subdie designs D1 and D2 highlighted. **c**, SEM fabrication steps for an overlap JJ. Scale bars, 10 mm (**b**), 1 µm (**c**), 50 nm (**d**). image of an overlap JJ. **d**, Transmission electron microscopy image of a cross

Fast gates, fast readout, fast reset (order of magnitude: 1-100 ns)

Fabrication process not too far from CMOS

Article Advanced CMOS manufacturing of superconducting qubits on 300 mm wafers

https://doi.org/10.1038/s41586-024-07941-9 Received: 5 March 2024 Accepted: 12 August 2024

J. Van Damme^{1,2}, S. Massar¹, R. Acharya¹, Ts. Ivanov¹, D. Perez Lozano¹, Y. Canvel¹, M. Demarets^{1,2}, D. Vangoidsenhoven¹, Y. Hermans¹, J. G. Lai¹, A. M. Vadiraj¹, M. Mongillo¹, D. Wan¹, J. De Boeck^{1,2}, A. Potočnik^{1⊠} & K. De Greve^{1,2}

Aluminium Silicon AlO_x (native) AlO_x (barrier)

Fast gates, fast readout, fast reset (order of magnitude: 1-100 ns)

Dissipation and Hamiltonian can be engineered at will

Fabrication process not too far from CMOS

Fast gates, fast readout, fast reset (order of magnitude: 1-100 ns)

Fabrication process not too far from CMOS

Dissipation and Hamiltonian can be engineered at will

The qubits stay in place: no need to fight against atoms/ions escaping traps

Logical qubit already demonstrated (beyond break-even and below threshold)

[Google Quantum AI, arXiv:2408.13687]

Built-in error correction for some qubits (cat qubits, GKP, fluxonium...)

Fast gates, fast readout, fast reset (order of magnitude: 1-100 ns)

Fabrication process not too far from CMOS

Dissipation and Hamiltonian can be engineered at will

The qubits stay in place: no need to fight against atoms/ions escaping traps

Logical qubit already demonstrated (beyond break-even and below threshold)

Built-in error correction for some qubits (cat qubits, GKP, fluxonium...)

Reaching error rates below 10⁻⁶

[Google Quantum AI, arXiv:2408.13687]

no cross-talk but low density

[Alice&Bob]

bad cross-talk but high density

[Delft Circuits]

- Reaching error rates below 10⁻⁶
- Cross-talk between control lines

[D. Yost et al. (MIT), npj QI 2020]

- Reaching error rates below 10⁻⁶
- Cross-talk between control lines
 - Chip to chip connectivity

[Jingjing Niu et al. (Shenzhen), Nature Electronics 2023]

1% transfer error

30x less bursts of quasiparticles below 1400m of rock

Is superconducting gap engineering enough?

[Google Quantum AI, arXiv:2402.15644]

- Reaching error rates below 10⁻⁶
- Cross-talk between control lines
 - Chip to chip connectivity

[[]Lisenfeld et al. (KIT), npj QI 2019]

- Reaching error rates below 10⁻⁶
- Cross-talk between control lines
 - Chip to chip connectivity
- Mitigating cosmic rays and parasitic Two Level Systems (TLS)
- Addressing power requirements (amount and heat removal)

- Cross-talk between control lines
 - Chip to chip connectivity
- Mitigating cosmic rays and parasitic Two Level Systems (TLS)
- Addressing power requirements (amount and heat removal)
 - Microwave driving millions of lines at 10 mK

[Delft Circuits]

Reaching error rates below 10-6

[KIDE fridges by Bluefors]

Cooling down >10⁵ logical qubits: need for new refrigerators?

- Cross-talk between control lines
 - Chip to chip connectivity
- Mitigating cosmic rays and parasitic Two Level Systems (TLS)
- Addressing power requirements (amount and heat removal)
 - Microwave driving millions of lines at 10 mK
- Cooling down >10⁵ logical qubits: need for new refrigerators?
- Benefitting from LDPC codes while it is hard to implement long-distance connectivity

n qubits encode k logical qubits with distance d (number of tolerable errors)

- Cross-talk between control lines
 - Chip to chip connectivity
- Mitigating cosmic rays and parasitic Two Level Systems (TLS)
- Addressing power requirements (amount and heat removal)
 - Microwave driving millions of lines at 10 mK
- Cooling down >10⁵ logical qubits: need for new refrigerators?
- Benefitting from LDPC codes while it is hard to implement long-distance connectivity
 - Making the best out of the hardware in algorithm design

- Cross-talk between control lines
 - Chip to chip connectivity
- Mitigating cosmic rays and parasitic Two Level Systems (TLS)
- Addressing power requirements (amount and heat removal)
 - Microwave driving millions of lines at 10 mK
- Cooling down >10⁵ logical qubits: need for new refrigerators?
- Benefitting from LDPC codes while it is hard to implement long-distance connectivity
 - Making the best out of the hardware in algorithm design
 - Environmental impact

The Laboratory for Physical Sciences

