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Optimization 101

• Goal = maximize (or minimize) some objective function given a number of 
constraints.

• More formally:
max𝑉 𝒙
subject to
𝒙 ∈ Ω

• Where:
• 𝑉 𝒙 is the objective function that returns the value of solution 𝒙.
• 𝒙 = 𝑥1, 𝑥2, … , 𝑥𝑛 is a solution that has 𝑛 decision variables.
• 𝑥𝑖 is the value assigned to decision variable 𝑖.
• Ω is the set of all feasible solutions that do not violate the problem constraints.

• Typical example of an optimization problem: the knapsack problem.
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Lots of (optimization) problems…

➔ lots of problem classes…

• Problems can be classified based 
on their « computational 
complexity ».

• A number of complexity classes 
are or particular interest:
• P

• NP

• NP Complete

• NP Hard



Computational complexity 101

• P, NP, NP Complete, and NP hard 
differ with respect to:
• Whether a solution is verifiable in 

polynomial time.
• Whether an optimal solution can be 

obtained in polynomial time.

• Polynomial time is considered 
tractable and requires a less-than 
exponential running time (e.g., O(n), 
O(n2), O(nk)…).

• Many optimization problems are NP 
Complete/Hard and are considered 
intractable (i.e., they require running 
time O(2n), O(n!), or worse).

• This diagram assumes P ≠ NP.
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Example NP-complete optimization problems

Ruiz-Vanoye et al. (2011). Survey of polynomial transformations
between NP-complete problems. Journal of Computational and
Applied Mathematics.
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Example NP-complete optimization problems

Ruiz-Vanoye et al. (2011). Survey of polynomial transformations
between NP-complete problems. Journal of Computational and
Applied Mathematics.
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prime-factorization 
problem?



Prime-factorization problem

• Most encryption schemes that 
are used today rely on large 
primes (e.g., RSA).

• If primes can be factorized 
efficiently, these encryption 
schemes can be broken in 
polynomial time.

• The best-known classical
algorithm to factorize primes 
runs in (sub-)exponential time…

• Rivest, Shamir, & Adleman (RSA)
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quantum computing?



Prime-factorization problem

• In 1994 Shor published a quantum 
algorithm that can factorize primes in 
polynomial time, resulting in an 
exponential speedup!

• Does this imply we can get an exponential 
speedup also when solving NP-complete 
problems? Can we solve NP-complete 
problems in polynomial time?

• Unfortunately, no, because it has never 
been shown that the prime-factorization 
problem is NP-complete… In fact, there 
may very well be a classical algorithm that 
can solve the prime-factorization problem 
in polynomial time.
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If we cannot get an 
exponential speedup, 
what speedup can we get?



A true Lov story

• Imagine yesterday Carl went out yesterday and 
he met the girl of his dreams! 

• It gets even better: he got her phone number! 
• Unfortunately, however, Carl completely forgot 

the name of his dream girl…
• Luckily, Carl has a phone book! 
• The phone book, however, is ordered by name, 

not by phone number. 
• As Carl is determined to find the name of his 

dream girl, he starts browsing the phone book. 
• As there are 2n entries in the phone book, in the 

worst-case, Carl will have to check 2n phone 
numbers. This might take a while…
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Lov Grover to the rescue!

• In 1996, Grover published an 
algorithm that can find a target 
entry in an unstructured 
database that has 2n entries by 
looking at only 2n entries.

• Compared to a classical
approach (that requires to look 
at all 2n entries), this results in a 
quadratic speedup!

• It has been shown that this 
speedup is optimal.
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Excellent, thanks 
for helping me 
out Mr. Grover!

Couldn’t you just 
have called the 
phone number?
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The key takeaway here is that we may not get an 
exponential speedup (as was the case with 
Shor), but we can perhaps hope for a quadratic 
speedup when solving NP-Complete/Hard
optimization problems.

Ok, that’s nice, however, even 
with a quadratic speedup, an 
NP-Complete problem is still 
NP Complete… Also, these 
results are almost 30 years old! 
Where do we stand now?



The NISQ era (Noisy Intermediate-Scale Quantum)

• Two big approaches for quantum computing:
• Adiabatic quantum computing. Used by machines (quantum annealers) that 

have a single purpose: optimization! Example: D-Wave.

• Gate-based universal quantum computing. Example: IBM. Note that a 
universal quantum computers is superior to a classical computer as any 
classical operation can be performed on a quantum computer with a 
polynomial overhead.

• Limitations shared by NISQ-era quantum computers:
• Small number of qubits ➔ limited problem size.

• Decoherence ➔ limited calculation time.

• Noise ➔ limited accuracy/precision.
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Adiabatic quantum computing

• Limitations of current quantum annealers:
• Original optimization problem needs to be transformed to a problem that is 

understood by the quantum annealer (e.g., a QUBO).
• QPU topology requires embedding.
• Limited qubit connectivity. 
• Chains are required to connect qubits.

• Selected research:
• Pérez Armas, Creemers, & Deleplanque. (2024). Solving the resource constrained 

project scheduling problem with quantum annealing, Nature Scientific Reports.
• Deleplanque, Creemers, & Pérez Armas. (2024). solQHealer: quantum procedures for 

rendering infeasible solutions feasible.
• Pérez Armas, Deleplanque, Aggoune, & Creemers (2024). A quantum hybrid column-

generation heuristic.



Adiabatic quantum computing
(selected research 1)

• Pérez Armas, Creemers, & Deleplanque. (2024). Solving the Resource 
Constrained Project Scheduling Problem (RCPSP) with quantum 
annealing, Nature Scientific Reports.

• What: we use quantum annealing to compare 12 well-known classical 
formulations for solving the RCPSP.

• Key take-away: formulations that work well on classical computers do 
not necessarily work well on quantum computers. In fact, on a 
quantum computer, the oldest formulation (which required the least 
number of qubits) had the best performance. 



Adiabatic quantum computing
(selected research 2)

• Deleplanque, Creemers, & Pérez Armas. (2024). solQHealer: quantum 
procedures for rendering infeasible solutions feasible.

• What: we use (reverse) quantum annealing to solve the Maximum 
Independent Set (MIS) problem as well as 3-SAT.

• Key take-away: (reverse) quantum annealing may be used to quickly 
repair infeasible solutions/solutions that have become infeasible due 
to new constraints that have surfaced. This is particularly useful in a 
setting where fast, online optimization is required (e.g., train 
scheduling).



Adiabatic quantum computing
(selected research 3)

• Pérez Armas, Deleplanque, Aggoune, & Creemers (2024). A quantum 
hybrid column-generation procedure.

• What: we use a hybrid column-generation procedure to solve the 
parallel machine scheduling problem as well as the 2-dimensional 
cutting stock problem.

• Key take-away: quantum annealers excel in rapidly generating many 
(good) solutions. These solutions may, for instance, be introduced as 
new columns in a hybrid column generation procedure (where the 
master problem is solved by a classical computer).



The NISQ era (Noisy Intermediate-Scale Quantum)

• Two big approaches for quantum computing:
• Adiabatic quantum computing. Used by machines (quantum annealers) that 

have a single purpose: optimization! Example: D-Wave.

• Gate-based universal quantum computing. Example: IBM. Note that a 
universal quantum computers is superior to a classical computer as any 
classical operation can be performed on a quantum computer with a 
polynomial overhead.

• Limitations shared by NISQ-era quantum computers:
• Small number of qubits ➔ limited problem size.

• Decoherence ➔ limited calculation time.

• Noise ➔ limited accuracy/precision.

Lessons learned:
1. Don’t expect that what works in the classical 

world also works in a quantum world.
2. Current machines may not yet be advanced 

enough to find optimal solutions for big, real-
life problems. However, they can already be 
used as fast heuristics or in hybrid procedures 
that need fast (but good) solutions.



The NISQ era (Noisy Intermediate-Scale Quantum)

• Two big approaches for quantum computing:
• Adiabatic quantum computing. Used by machines (quantum annealers) that 

have a single purpose: optimization! Example: D-Wave.

• Gate-based universal quantum computing. Example: IBM. Note that a 
universal quantum computers is superior to a classical computer as any 
classical operation can be performed on a quantum computer with a 
polynomial overhead.

• Limitations shared by NISQ-era quantum computers:
• Small number of qubits ➔ limited problem size.

• Decoherence ➔ limited calculation time.

• Noise ➔ limited accuracy/precision.

What would happen if we 
have a noiseless universal 
quantum computer?



Universal quantum computing

• A noiseless universal quantum computer does not exist (yet)…

• However, we can simulate one!

• We coded an ideal simulator to assess the performance of future 
quantum optimization algorithms.

• Selected research:
• Creemers & Pérez Armas. (2024). Discrete optimization: a quantum 

revolution?

• Creemers & Pérez Armas. (2023). Limitations of existing quantum algorithms.

• Creemers. (2024). Speeding up Grover’s algorithm.



Universal quantum computing
(selected research 1)

• Creemers & Pérez Armas. (2024). Discrete optimization: a quantum revolution?

• What: we develop several Grover-based quantum procedures for solving discrete 
optimization problems.

• Key takeaways: 
• We can solve any discrete optimization problem using 𝑂 𝜇 2𝑏𝑛 operations, where 𝜇 is the 

number of operations required to verify a solution & 2b is the number of discrete values that 
can be assigned to any of the n decision variables.

• Our procedures can be used as general-purpose solvers (similar to CPLEX and Gurobi) but 
also as heuristics.

• We present a hybrid Branch-and-Bound (B&B) procedure that expects to visit 𝑂 2𝑛 nodes. 
In contrast, in the worst case, a classical B&B visits 𝑂 2𝑛 nodes ➔ we achieve a quadratic 
speedup!

• We demonstrate that our procedures can match the worst-case performance of the best 
classical algorithms that solve the knapsack problem.

• For quadratic knapsack problems we outperform the best classical algorithms. 
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Universal quantum computing
(selected research 2)

• Creemers & Pérez Armas. (2023). Limitations of existing quantum 
algorithms.

• What: we investigate whether we can use quantum counting, nested 
quantum search, and amplitude amplification for solving optimization 
problems.

• Key takeaways: 
• When effectively implementing these quantum algorithms, several challenges 

need to be overcome.

• They do not allow to outperform Vanilla Grover; they do not allow a better-
than quadratic speedup.



Universal quantum computing
(selected research 3)

• Creemers. (2024). Speeding up Grover’s algorithm.

• What: we assess the (expected) speedup when running Grover’s 
algorithm in series, parallel, and in series/parallel.

• Key takeaways:
• The expected runtime can be reduced by almost 13% if we run Grover’s 

algorithm in series.

• The parallel execution of Grover’s algorithm yields only a square-root 
speedup in the number of QPUs (e.g., if we use 4 QPUs, we do not obtain a 
linear speedup of factor 4, but expect only a square-root speedup of factor 
4 = 2). The reason being that we deal with a probabilistic process (as 

opposed to classical procedures that are often deterministic).



• As quantum algorithms have probabilistic outcomes, it
may be more…

• Quantum algorithms may be used as general-purpose
solvers, exact...

• Compared to classical computing we can obtain up to
a quadratic speedup when solving NP-Complete/Hard
optimization problems. Even though these problems
remain…

• Quantum computers excel at solving complex
problems that have non-linear objective functions
and/or constraints (in contrast to classical computers).
Take for instance the quadratic knapsack problem.

• Once we have universal quantum computing, quantum
algorithms will revolutionize the field of optimization!

• As quantum algorithms often have probabilistic outcomes, it may be more
challenging to obtain a linear speedup from parallel computing.

• Quantum algorithms may be used as general-purpose solvers, exact
(hybrid) procedures, or heuristics.

• Compared to classical computing we can obtain up to a quadratic speedup
when solving NP-Complete/Hard optimization problems. Even though
these problems remain NP-Complete/Hard, a quadratic speedup is still very
interesting from a practical point of view.

Some conclusions...



However, we may need to be patient for a bit 
longer…

Email: sc@cromso.com
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