

# SUPPLY CHAIN

Teratec – TQCI Seminars - Nov. 14th 2024, EDF Lab Saclay Quantum Sensors in the Business EDF/DSC/DSCI/DQI/DEA – Bernard Sartre NDT Expert Magnetic Sensors Perspectives in Nuclear NDT field

### **Summary**

### **Introduction to NDT**

Principles

Overview of NDT Techniques in power generation

#### **Nowadays magnetic NDT**

Common usage and weaknesses

Magnetic sensors in magnetic NDT probe technology

Status of advanced magnetic NDT Techniques

#### **Future of magnetic NDT techniques**

Magnetic NDT Techniques potential applications Some specifications for magnetic NDT sensors

### **Brief sensors specifications**

edf

SUPPL

### What is NDT ?



#### Techniques and operations to assess industrial equipment condition

- Equivalent to diagnosis tools in medicine
- To reveal weaknesses and lack of compliance (services rules and security files)
- In the nuclear industry information gathered with NDT is of main importance for safety plants assessment (pressurized equipment,
- conventional equipment condition have also to be assess to ensure the best plants available time

#### Planned at every step of equipment cycle of life

- Material supply
- Equipment manufacturing/assemb'
- On-site installation
- Plant operation
- Dismantling









### Non-Destructive Testing in Power Generation Nuclear (EDF)

### NDT are deployed as part of:

Nuclear Power and Pressurized Equipment security regulations

Nuclear Power Plants non-nuclear equipment condition assessment



### The goal is:

At the manufacturing level: In-service before each cycle: to demonstrate that the targeted design level of security is reach

to demonstrate that the security files match the regulation requirements



Teratec – TQCI Seminars – Quantum Sensors in the Business – Nov. 14th 2024, EDF Lab Saclay EDF/DSC/DQI – Bernard Sartre – Magnetic Sensors Perspectives in Nuclear ND

SUPPLY CHAIN **MAGNETIC SENSORS – PERSPECTIVES IN NUCLEAR NDT FIELD** 

### **Non-Destructive Testing Techniques**

Principles and assumption

### Most NDT techniques rely on:

- A source that created a physical excitation in the medium to be inspected
- An interaction between the excitation and the flaw depending on the material behavior laws
- A sensor that converts the reflected deviation to measurable physical quantity

### Then an NDT probe merge sources and sensors

Note that the same devices could act as source and sensor

### Bottom view of an eddy current array probe

Ultrasonic backward echo

coming from a planar flaw

Same coils as inductors and field sensors

Most often NDT techniques are used to detect a deviation from a regular state not to assess material actual condition

- Ultrasonic: no echo
- Radio: Contrast
- Eddy current: Impedance change
- Magnetic particle: Linear feature in the image

### Note that most often NDT techniques need scanning from the surface of the part to be inspected

SUPPLY

CHAIN

Coils





### **Non-Destructive Testing Techniques**

Classification of the main techniques



|                         | Techniques        | Source                          | Excitation                      | Manufacturing | In-service |
|-------------------------|-------------------|---------------------------------|---------------------------------|---------------|------------|
| In volume<br>inspection | Ultrasound        | Piezo, magnetic actuator, LASER | Mechanical wave                 | Х             | Х          |
|                         | X-ray             | Tube                            | Electromagnetic wave            | Х             |            |
|                         | Particle Beam     | Accelerator, Source radio       | Particle Beam                   | Х             | Х          |
|                         | Acoustic emission | Flaw Constraint release         | Mechanical wave                 |               | Х          |
| Surface<br>inspection   | Visual            | Light (from IR to UV)           | Electromagnetic wave            |               | Х          |
|                         | Eddy current      | Coils                           | Electric current                | Х             | Х          |
|                         | Magnetic Particle | Yoke & coils, magnets           | Quasi-static magnetic field     | Х             |            |
|                         | Microwave         | Gunn diode, Magnetron           | Electromagnetic wave (free air) |               |            |
|                         | Thermography      | Light, coils, warm air,         | Heat diffusion                  | Х             |            |
|                         | Penetrant Testing | Colored Liquid                  |                                 | Х             | Х          |

 $\sim$ 

### **Electromagnetic Non-Destructive Testing Techniques**

Magnetic Techniques Probes Sensors "technologies"

| Techniques            | Sensor                  | Output                      | Scanning speed |
|-----------------------|-------------------------|-----------------------------|----------------|
| Eddy current (sine)   | Coil, array of coils    | Impedance / trans-impedance | Up to 2 m/s    |
| Eddy current (pulsed) | Coils                   | Time related decay points   | Max. 100 mm/s  |
| Magnetic Particle     | Ferromagnetic particles | 2D images                   | ~ 1 m²/h       |
| Flux leakage          | Coils                   | Time Inductive voltage      | Up to 2 m/s    |
| Microwaves            | -                       | -                           | -              |

edf

 $\sim$ 

SUPPLY

CHAIN

### Nowadays common use of NDT probes

### Probing for a deviation from a standard condition



Typical eddy current signal – Bobbin tube inspection

#### Magnetic particle – Breaking surface flaw image

![](_page_7_Picture_6.jpeg)

#### Weaknesses of these practices

Need of calibration standard (including machined flaws) to set sensitivity and sorting performance of the process

- Costs and design and manufacturing time
- Component representativity and/or repeatability may be difficult to assume
- Main part of the uncertainty, up to 50 % using ET method

![](_page_7_Figure_12.jpeg)

Sensitive to local changes of the material and environment properties

- Performances too rarely mainly assessed
- Need to ensure that operating conditions are fulfilled
- Not possible when no data is recorded (MT, ...)
- Repairing when condition is not clear

No flaw sizing

Possible performances drifts

# What future may be made of?

### Data suited to be processed efficiently

Data that could be processed in a way to output information more straightly linked to the actual condition of the components (less uncertainty, performance demonstration easier)

Magnetic particles UV image of surface breaking cracks

#### **Productivity improvement**

More tooling and data recording (according to current strategies)

- Scanning speed increased
- Man time analysis reduced

![](_page_8_Picture_9.jpeg)

Eddy current surface scan – Signal 2D drawing to help analysis

![](_page_8_Picture_11.jpeg)

Teratec - TQCI Seminars - Quantum Sensors in the Business - Nov. 14th 2024, EDF Lab Saclay

Section of a tube wall showing cracks

![](_page_8_Picture_14.jpeg)

Extending the magnetic NDT to sizing capabilities

- To do without complementary sizing techniques
- Development of data inversion methods

![](_page_8_Picture_18.jpeg)

# How magnetic sensors could help?

### Advanced magnetic NDT will heavily rely on array probes

#### But sensor array are costly

From some thousand to tenth of thousand € Mainly manual coils wiring and assembly Must ensure similar performance over all channels Small scale machining/mechanics

EC array probe for weld inspection

![](_page_9_Picture_6.jpeg)

### Ways to lower prices

Sensors must be compatible with mass manufacturing processes and automated assembly for probes manufacturing

![](_page_9_Figure_9.jpeg)

![](_page_9_Picture_11.jpeg)

![](_page_9_Picture_12.jpeg)

![](_page_9_Picture_13.jpeg)

### Why not more advanced magnetic NDT in nuclear?

#### Few needs issued by utilities, inspection relies on existing products

- Historical techniques prescribed by codes
- Progress driven "new techniques" proposed by suppliers and ... by "crisis"
- Magnetic Techniques are supposed to be only able to detect flaw

### Potential needs not enough documented

- Data recording
- Dose reduction
- Productivity
- ...?

### Costs

- Nuclear safety related NDT should be qualified
- NDT operation (mainly operation then NDT equipment and then probes)
- Array probes

![](_page_10_Picture_15.jpeg)

### Why no more advanced magnetic NDT in nuclear?

#### **Others**

- Lack of numerical methods to process data to extract useful information
- Probe reliability (mainly long cables)
- No techniques of generic uses, new (somewhat advanced) Magnetic NDT Techniques addresses specific and small scope issues
- Long design and development and qualification planning
- Data processing development come at the end of the method development process

#### But some opportunities exist at least

High resolution Eddy Current equipment Probe size Eddy Current generator

![](_page_11_Picture_10.jpeg)

![](_page_11_Picture_11.jpeg)

![](_page_11_Picture_13.jpeg)

SUPPL

# Ways of improvements short list

### No needs of new techniques

### **By applications**

Eddy current on exchanger tubes

- Sizing
- Easier and robust automatic analysis
- Spatial resolution
- Eddy current magnetic pipes
- Corrosion imaging
- Wall thickness monitoring
- Eddy current surface inspection
- Sizing,
- Productivity (acquisition, analysis)
- **Magnetic Particle**
- Productivity both acquisition and analysis
- Data recording

![](_page_12_Picture_17.jpeg)

13

![](_page_12_Picture_20.jpeg)

# **Electromagnetic Non-Destructive Testing Techniques**

Sensors typical specifications

| SU       | 22LY |  |
|----------|------|--|
| CH       | AIN  |  |
| <u> </u> |      |  |

| Sensors                          |                             |                           |  |  |
|----------------------------------|-----------------------------|---------------------------|--|--|
|                                  | Eddy current (conventional) | Magnetic Particle Testing |  |  |
| Frequency of operation           | 1 kHz to 1 MHz              | 0 to 50 Hz                |  |  |
| Max. magnetic field flux density | 100 µT                      | 0.1 - 0.5 T               |  |  |
| Resolution                       | 1 nT/√Hz                    | 5 nT/√Hz                  |  |  |
| Linearity                        | Some % FS                   | Some % FS                 |  |  |
| Drift                            | < 250 ppm/day               | < 250 ppm/day             |  |  |
| Temperature coefficient          | TBD                         | TBD                       |  |  |

![](_page_13_Picture_5.jpeg)

 $\sim \sim \sim$ 

# **Electromagnetic Non-Destructive Testing Techniques**

Sensors typical specifications

![](_page_14_Picture_3.jpeg)

| Device (arrays)                            |                                               |                                               |  |  |
|--------------------------------------------|-----------------------------------------------|-----------------------------------------------|--|--|
|                                            | Eddy current (conventional)                   | Magnetic Particle Testing                     |  |  |
| Axis of sensitivity                        | $\perp$ & one // to the surface to be scanned | $\perp$ & one // to the surface to be scanned |  |  |
| Sampling                                   | 1000 Hz                                       | 1000 Hz (all axis)                            |  |  |
| Data format                                | 24 bits                                       | 12 to 16 bits                                 |  |  |
| Array                                      | 2D (/ 3D)                                     | 1D / 2D                                       |  |  |
| Array size / sensors                       | 20 x 10 mm                                    | 50 mm / 50 x 10 mm                            |  |  |
| Array shape                                | Flat / ring                                   | Flat                                          |  |  |
| Spatial resolution                         | 1 mm                                          | 1 mm                                          |  |  |
| Distance of the sensors to scanned surface | 0,5 mm                                        | < 1 mm                                        |  |  |
| Temperature of operation                   | 10 to 70 °C                                   | 10 to 40 °C                                   |  |  |
| Environment                                | Air/ water                                    | Air                                           |  |  |

![](_page_14_Picture_5.jpeg)

 $\sim\sim$ 

15

![](_page_15_Figure_0.jpeg)