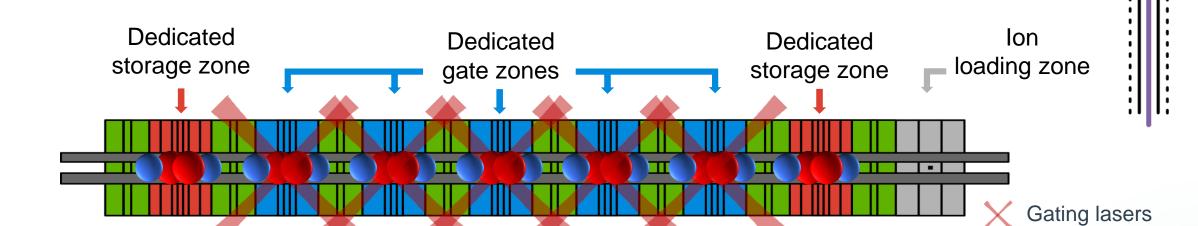
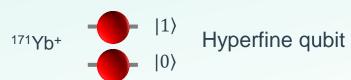


Scaling the QCCD Architecture for Trapped-Ion Quantum Computers


Presented by Alistair Milne

13th November 2024

QCCD Trapped-Ion Architecture



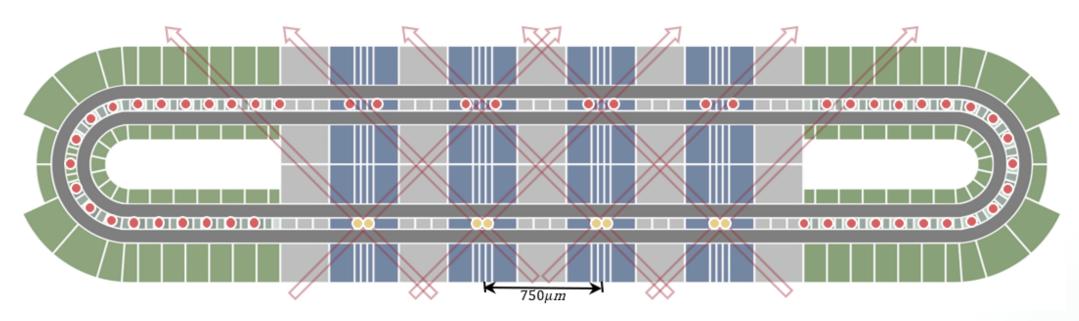
H1 Generation Ion Trap Architecture

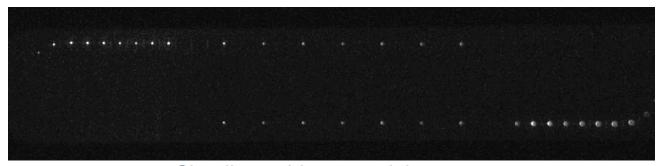
Quantum bits (qubits) are stored in the electronic states of identical Yb⁺ ions.

QCCD architecture enables using gate zones

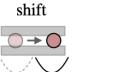
 Single qubit gates, two qubit gates and state detection all performed using lasers Cooling ions provide mid-circuit cooling, maintaining circuit fidelity throughout circuit.

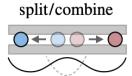
¹³⁸Ba+

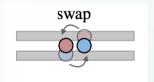

Cooling ion



System Model H2: 56 qubit trapped-ion processor

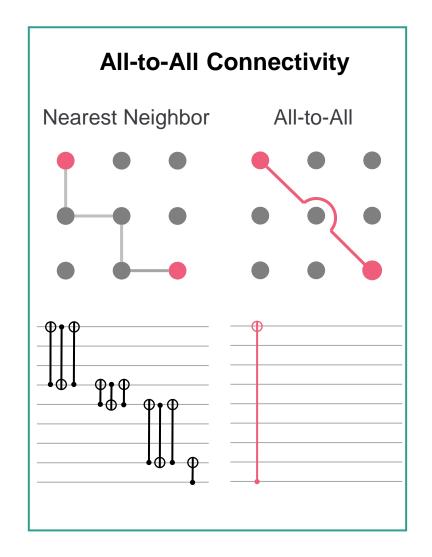




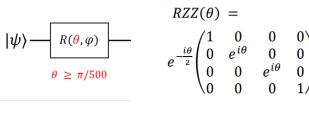

Shuttling qubits around the trap

Transport primitives

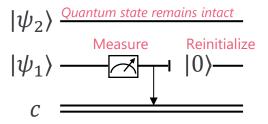
 Enable arbitrary sorting of ions and allto-all connectivity



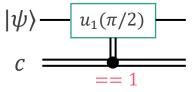
QCCD architecture: differentiating features



- 56 qubits, 1540 qubit pairings
- 4 gate zone calibrations
- Not 1540 qubit pair calibrations



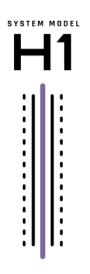
Arbitrary Angle 1-qubit and 2-qubit gates

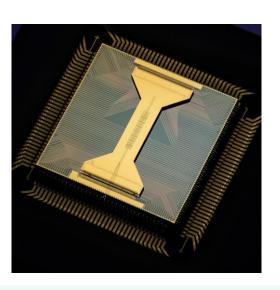

Qubit Measurement and Reuse

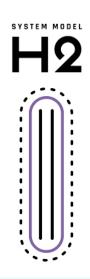
Measurement and reuse

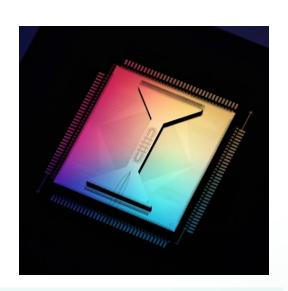
Conditional logic

If
$$c==1$$
, perform gate
If $c==0$, do not


Quantinuum's commercial systems

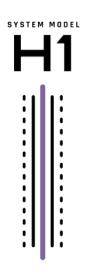

Hardware specifications and benchmarking data available

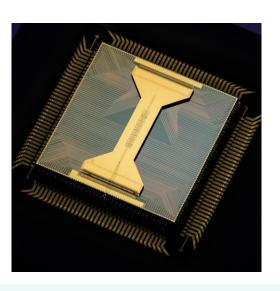

at:

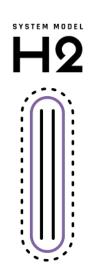


https://github.com/CQCL/quantinuum -hardware-specifications/

Qubits	20 fully-connected	56 fully-connected	
1Q Gate Error	2.1(3)×10 ⁻⁵	2.9(4)×10 ⁻⁵	
2Q Gate Error	$8.8(3) \times 10^{-4}$ 1.28(8)×10 ⁻³		
SPAM Error	2.5(1)×10 ⁻³	1.5(1)×10 ⁻³	
Measurement Crosstalk Error	1.5(1)×10 ⁻⁵	7.4(8)×10 ⁻⁶	
Memory Error	2.1(2)×10 ⁻⁴	5.0(5)×10 ⁻⁴	
Quantum Volume	1 048 576 (2 ²⁰)	2 097 152 (2 ²¹)	
Mirror Benchmarking (Qubits)	1.4(2)×10 ⁻³ (20)	2.5(1)×10 ⁻³ (56)	
GHZ State Fidelity (Qubits)	81.6(8)% (20)	61.6(8)% (56)	
Depth-1 Circuit Time	21 ms	70 ms	

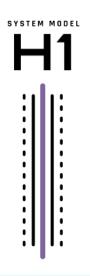

Quantinuum's commercial systems

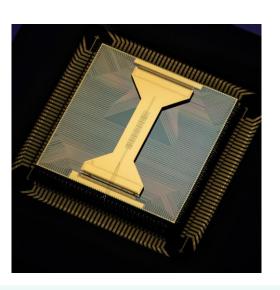

Hardware specifications and benchmarking data available


at:

https://github.com/CQCL/quantinuum -hardware-specifications/

Qubits	20 fully-connected	56 fully-connected
1Q Gate Error	2.1(3)×10 ⁻⁵	2.9(4)×10⁻⁵
2Q Gate Error	8.8(3)×10 ⁻⁴	1.28(8)×10 ⁻³
SPAM Error	2.5(1)×10 ⁻³	1.5(1)×10 ⁻³
Measurement Crosstalk Error	1.5(1)×10 ⁻⁵	7.4(8)×10 ⁻⁶
Memory Error	2.1(2)×10 ⁻⁴	5.0(5)×10 ⁻⁴
Quantum Volume	1 048 576 (2 ²⁰)	2 097 152 (2 ²¹)
Mirror Benchmarking (Qubits)	1.4(2)×10 ⁻³ (20)	2.5(1)×10 ⁻³ (56)
GHZ State Fidelity (Qubits)	81.6(8)% (20)	61.6(8)% (56)
Depth-1 Circuit Time	21 ms	70 ms


Quantinuum's commercial systems

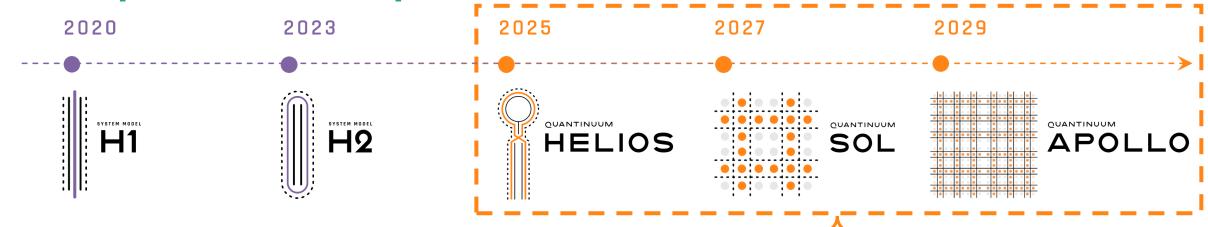

Hardware specifications and benchmarking data available

at:



https://github.com/CQCL/quantinuum -hardware-specifications/

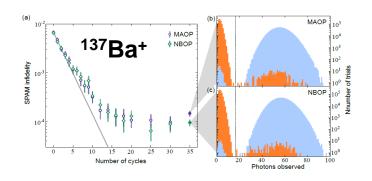
Qubits	20 fully-connected	56 fully-connected
1Q Gate Error	2.1(3)×10 ⁻⁵	2.9(4)×10 ⁻⁵
2Q Gate Error	8.8(3)×10 ⁻⁴	1.28(8)×10 ⁻³
SPAM Error	2.5(1)×10 ⁻³	1.5(1)×10 ⁻³
Measurement Crosstalk Error	1.5(1)×10 ⁻⁵	7.4(8)×10 ⁻⁶
Memory Error	2.1(2)×10 ⁻⁴	5.0(5)×10 ⁻⁴
Quantum Volume	1 048 576 (220)	2 097 152 (2 ²¹)
Mirror Benchmarking (Qubits)	1.4(2)×10 ⁻³ (20)	2.5(1)×10 ⁻³ (56)
GHZ State Fidelity (Qubits)	81.6(8)% (20)	61.6(8)% (56)
Depth-1 Circuit Time	21 ms	70 ms



Development roadmap

	2020	2023	2025	2027	2029
SYSTEMS:	SYSTEM MODEL H 1	H2	HELIOS	SOL	APOLLO
PHYSICAL QUBITS:	20	56	96	192	1000's
PHYSICAL 2-QUBIT GATE ERROR:	1 × 10 ⁻³	1 × 10 ⁻³	< 5 × 10 ⁻⁴	< 2 × 10 ⁻⁴	1 × 10 ⁻⁴
LOGICAL QUBITS:		> 12	~ 50	~ 100	100's
LOGICAL ERROR RATES:		1 × 10 ⁻³	< 10 ⁻⁴	~ 10 ⁻⁵	1 × 10 ⁻⁵ to 1 × 10 ⁻¹⁰ *

Development roadmap



2D grid with scalable electronics

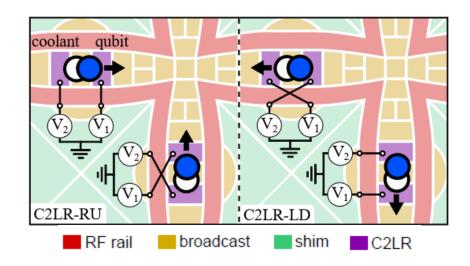
R. Delaney et al., Multispecies Ion Transport in a Grid Based Surface-Electrode Trap, arXiv:2403.00756 (2024)

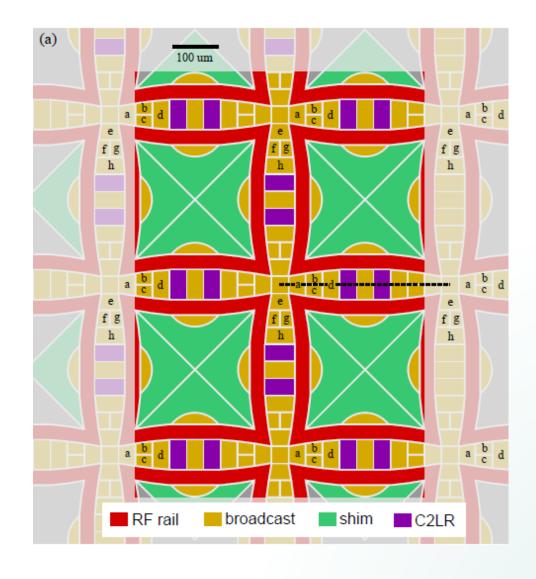
Integrated photonics for beam delivery

New qubit with high SPAM fidelity

F. A. An et al., Phys. Rev. Lett. 129, 130501 (2022)

Universal, Fault-Tolerant Quantum Computing

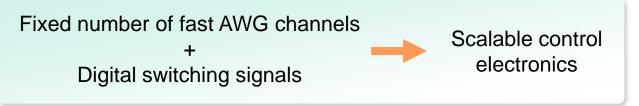

Scalable wiring for 2D grid

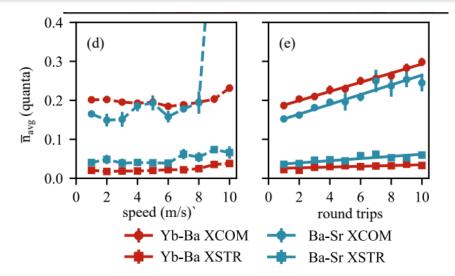

- 2D grid traps enable fast all-to-all connectivity
- Without a mitigation strategy, wiring scales linearly
- C2LR scheme: broadcast RF signals + 1 digital signal per zone

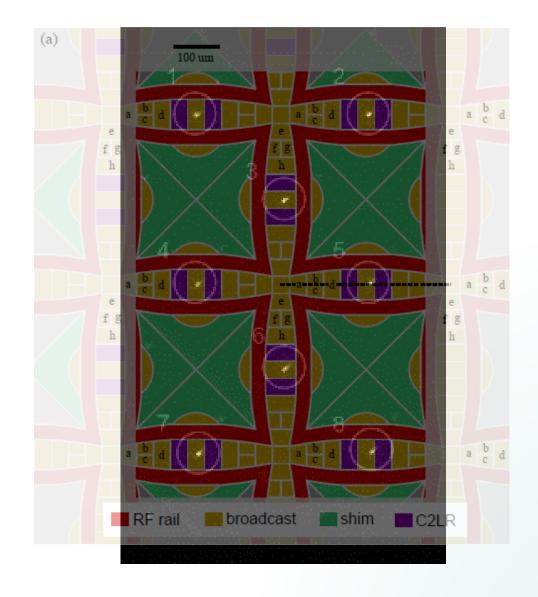
Fixed number of fast AWG channels

+
Digital switching signals

Scalable control electronics



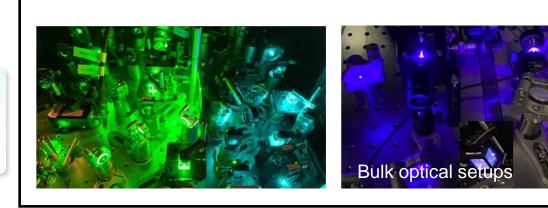


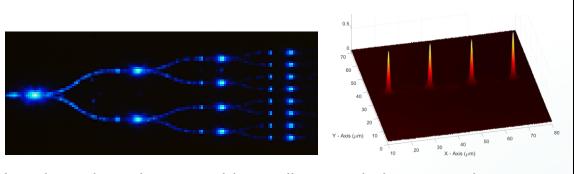


Scalable wiring for 2D grid

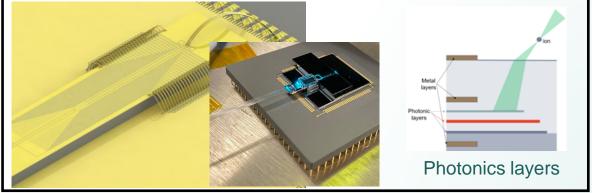
- 2D grid traps enable fast all-to-all connectivity
- Without a mitigation strategy, wiring scales linearly
- C2LR scheme: broadcast RF signals + 1 digital signal per zone

Photonics integration

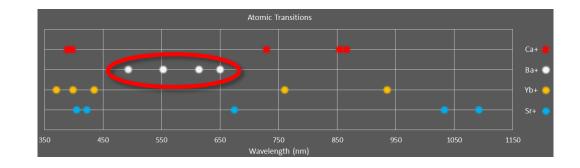

 Free-space bulk + fiber optics: large physical footprint, complex alignment

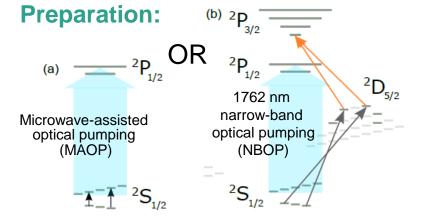


 Photonics for beam delivery and conditioning: decrease physical footprint and reduce alignment complexity

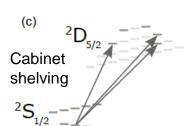


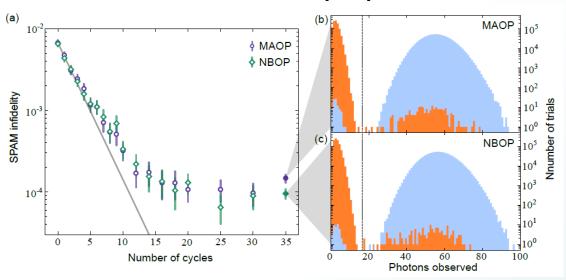
 Integrated photonics in trap structure, metamaterials for in-vacuum beam shaping and control


Low-loss photonic waveguides, splitters, polarizers, couplers



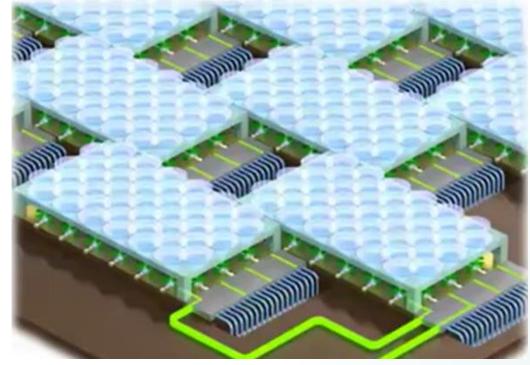
¹³⁷Ba+: qubit for scale


- Visible laser wavelengths more compatible with integrated photonics. No high-power UV required.
- Low SPAM error


State

Detection:

SPAM error: 9.6(1.4)×10⁻⁵



An, Fangzhao Alex, et al. High fidelity state preparation and measurement of ion hyperfine qubits with I > 1/2, Phys. Rev. Lett. 129, 130501 (2022).

Modular architectures with trapped ions

- Near term: increase qubit density on single chip (50,000 qubits on a single square-inch dye)
- Long term: trap tiling to scale to millions of qubits (30 cm x 30 cm area)
- Qubits distributed between modules via ion transport
- Beams delivered via integrated photonics

Tiled trap modules

Quantinuum's Quantum Computing Infrastructure

INQUANTO

Next generation of molecular and materials discovery

Algorithm Libraries

Quantum Machine Learning
Quantum Monte Carlo Integration
Quantum Natural Language Processing

Third party software

Enables other partners to leverage the power of quantum

Quantum workflow orchestration platform

TKET

Multi-platform quantum SDK | Open-source

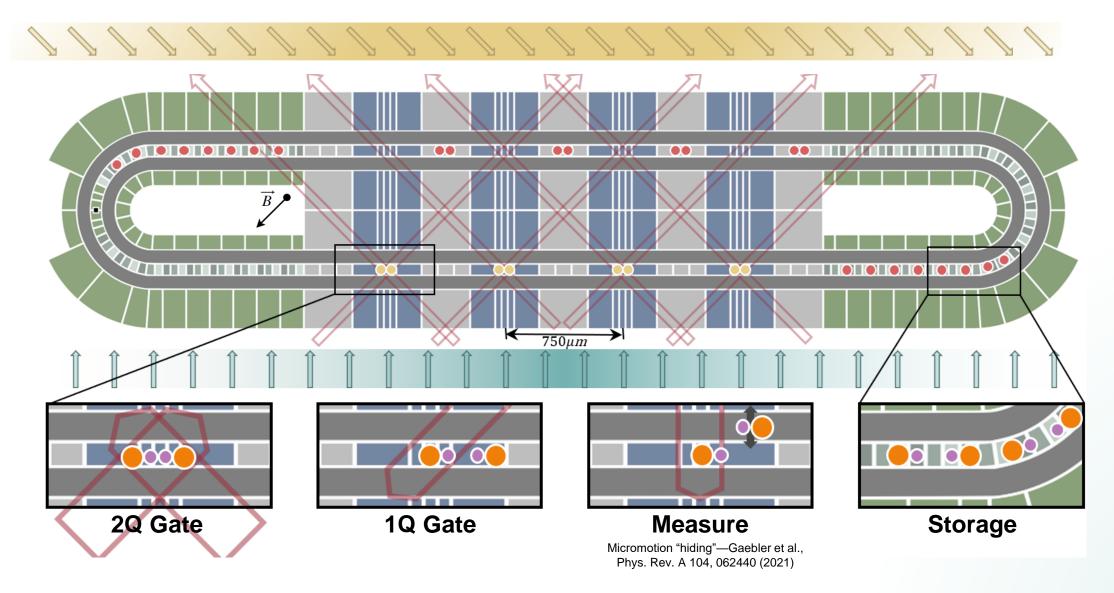
Quantum Error Correction: Quantinuum and partners

QUANTINUUM SYSTEMS

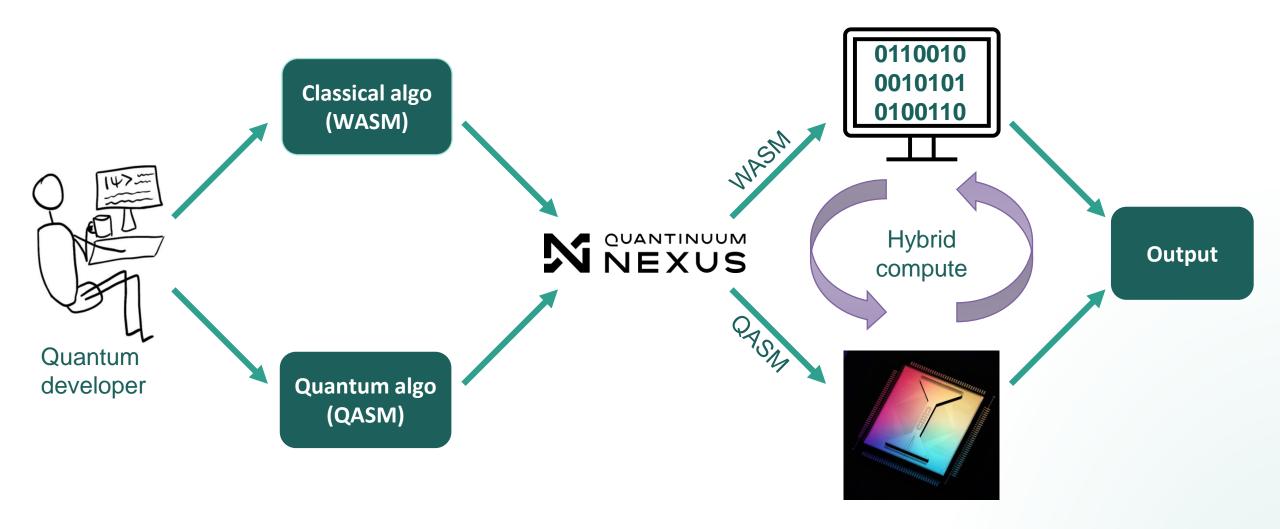
The world's highest-performing quantum hardware

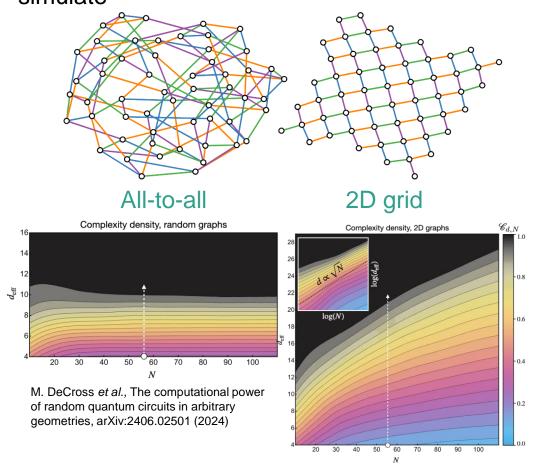
Other quantum computers

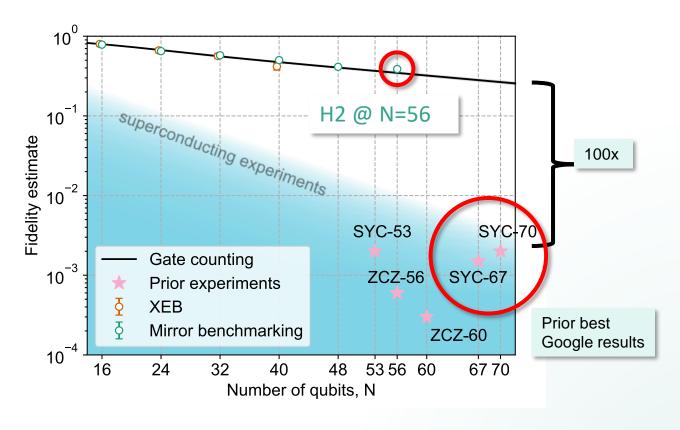
Thank you



System Model H2: 56 qubit trapped-ion processor



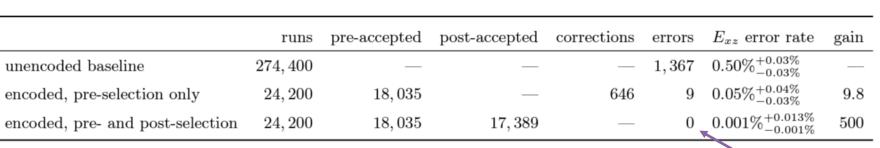

Fault-tolerant Quantum Computing Infrastructure



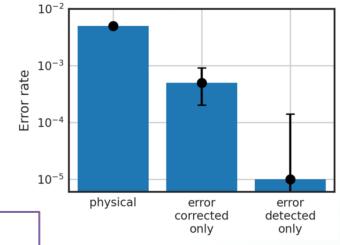
Exceeding classical computing: random circuit sampling

All-to-all connectivity: much harder to classically simulate

Executed with 100x better fidelity than previous demonstrations

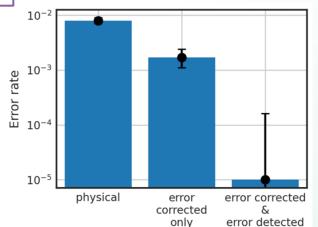


F. Arute, et al., Nature **574**, 505 (2019). Q. Zhu, et al., Science Bulletin **67**, 240 (2022) A. Morvan, et al., arXiv 2304.11119 (2023). M. DeCross et al., arXiv 2406.02501



Demonstration of logical qubits and repeated error correction with better-than-physical error rates

>10⁴ trials with 0 errors



Bell state preparation: [[7,1,3]] Steane code

Bell state preparation: [[12,2,4]] Carbon code

	runs	pre-accepted	post-accepted	corrections	errors	I_{xz} error rate	gain
unencoded baseline	16,000	16,000	_	_	125	$0.8^{+0.1}_{-0.1}\%$	_
encoded, pre-selection only	22,000	15,483	_	928	26	$0.17^{+0.07}_{-0.06}\%$	4.7
encoded, pre- and post-selection	22,000	15,483	15,409	854	0	$0.001\%^{+0.015\%}_{-0.001\%}$	800

M. P. da Silva *et al.,* arXiv 2404.02280

Demonstration of quantum computation and error correction with a tesseract code

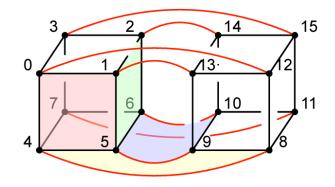


FIG. 1. The [[16, 6, 4]] color code on the 4D hypercube, or tesseract. Each of the 16 vertices is a qubit. Cubes are X and Z stabilizers, and squares are logical operators, e.g., 0145.

More complex structure (compared to 2D surface code)

Benefits from all-to-all connectivity

Experiment	Qubits	Baseline error rate	Encoded error rate	Gain
Path-4	4	1.5(2)%	$0.10^{+0.11}_{-0.06}\%$	$15\times$
Cube-8	8	2.3(3)%	$0.2^{+0.2}_{-0.1}\%$	$11\times$
$ {}^{\scriptscriptstyle{0^{12}}\rangle} + {}^{\scriptscriptstyle{1^{12}}\rangle} \ Cat\text{-}12$	12	2.4(3)%	$0.11^{+0.16}_{-0.08}\%$	$22\times$
Error correction 5>	, 4	2.7(4)%	$0.11^{+0.21}_{-0.09}\%$	$24\times$
Entor correction 57	8	5.6(6)%	$0.7^{+0.7}_{-0.4}\%$	$8 \times$

12-logical-qubit GHZ state prep with ~99.9% fidelity (22x better than 12-physical-qubit GHZ state prep)

B. W. Reichardt et al., arXiv 2409.04628

