

State of the art in hardware: Superconducting cat qubits

Jeremy Stevens TQCI Seminar 13/11/2025

Challenges for superconducting qubits

Quantum Architecture		Quantum	Quantum Hardware		Enabling technologies	
	Reaching error rates		Cross-talk between co		ntrol lines	
Efficient LDPC encoding		Chip to chip	Chip to chip connectivity		Addressing power requirements	
Tailoring algorithm to hardware		Mitigating cos	Mitigating cosmic rays and TLS		Millions of microwave lines	
					Cooling dov	wn > 10 ⁵ qubits
					Environm	ental impact

HOW DO WE PLAN TO ADRESS THESE CHALLENGES AT A&B?

- 1. Use quantum architecture / hardware that **minimizes qubit count**
- 2. Make sure this architecture is **compatible with global effort** on enabling technologies

01 Cat qubit architecture

A hardware efficient strategy

100 logical qubits at 10⁻⁸

LDPC-cat codes for low-overhead quantum computing in 2D Diego Ruiz,^{1,2,*} Jérémie Guillaud,¹ Anthony Leverrier,³ Mazyar Mirrahimi,² and Christophe Vuillot⁴ ¹Alice & Bob, 49 Bd du Général Martial Valin, 75015 Paris, France ²Laboratoire de Physique de l'École Normale Supérieure, École Normale Supérieure, Centre Automatique et Systèmes, Mines Paris, Université PSL, Sorbonne Université, CNRS, Inria, 75005 Paris ³Inria Paris, France ⁴Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France (Dated: February 7, 2024)

A 758 cat qubits memory (~1700 qubit for operations) Assuming $F_{CX} = 98.4\%$ ($\kappa_1/\kappa_2 = 10^{-4}$) Local connectivity 5 (4 QEC + 1 logical ops)

KEY ASSUMPTIONS

Low bit-flips (incl. during operations)

D. Ruiz et al. arXiv:2401.09541 (2024) DARPA Quantum Benchmark Initiative DARPA-PS-24-26

Using classical error correcting codes for remaining errors

What if there are "no" bit-flips ? i.e.

physical X error \times # physical qubits per logical \leq logical Z error

Only one error has to be corrected by the code

1. Fowler et al. PRA 86 (2012)

2. J. Guillaud and M. Mirrahimi Physical Review X 9, 10.1103 (2019)

A high threshold 1D repetition code

STABILIZERS $X_i X_{i+1}$

0.2

threshold

0.4

 N_{Z_a}

 N_{Z_d} = Idle + CX $N_{Z_a} = P_{|+\rangle} + CX + M_X$

Le Régent et al. Quantum 7, 1198 (2023)

Classical LDPC code can be local in 2D

 \rightarrow Requires long distance connections

→ Becomes local since long distance in 1D become short in 2D

Low bit-flip qubits

Distant mesoscopic states of light makes it unlikely for local noise to create a bit-flip

TWO-PHOTON STABILIZATION

Dissipative cat-qubits

Bit-flips are suppressed exponentially \rightarrow $\Gamma_{\rm Z} \propto e^{-2|\alpha|^2}$

Phase-flips increase linearly $\rightarrow \Gamma_X = 2|\alpha|^2 \kappa_1$

> Typ. $T_Z pprox 10 ext{ s}$ $T_X = 1 ext{ } \mu ext{ s}$

Make sure that bit-flips remain suppressed and phase-flip error are below error correction threshold

Typ.
$$p_Z pprox 10^{-4}$$

 $p_X = 15\%$

Z. Leghtas et al. Science 347, 853 (2015)A. Marquet et al. Phys. Rev. X 14, 021019 (2024)

Error rates saturation

- 2. M. McEwen et al. arXiv:2402.15644 (2024)
- 3. Google Quantum AI et al. arXiv:2408.13687 (2024)

02 Enabling technology needs

A hardware efficient strategy

Estimated 200-fold qubit count reduction 100 logical qubits at 10-8 compared to standard superconducting LDPC-cat codes for low-overhead quantum computing in 2D qubits with similar physical assumptions. Diego Ruiz,^{1,2,*} Jérémie Guillaud,¹ Anthony Leverrier,³ Mazyar Mirrahimi,² and Christophe Vuillot⁴ ¹Alice & Bob, 49 Bd du Général Martial Valin, 75015 Paris, France ²Laboratoire de Physique de l'École Normale Supérieure, École Normale Supérieure, Centre Automatique et Systèmes, Mines Paris, 200 times less hardware should reduce: Université PSL, Sorbonne Université, CNRS, Inria, 75005 Paris ³Inria Paris, France power required ⁴Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France (Dated: February 7, 2024) microwave lines qubits to cooldown 1700 cat gubits **TAYLORING ALGORITHMS** Close to the **IBM** Quantum FTQC optimization is vastly different from NISQ. largest super-1121 qubits Resource estimation is done by assuming logical gates conducting qubit chip by IBM CONDOR B happen one after the other. 1121 QUBITS SCALE | YIELD \rightarrow Dedicated line of work, for compilation and architecture optimization.

Superconducting qubit fabrication bottleneck

IMPLEMENTATION

Uses standard superconducting qubit components:

- planar fabrication techniques
- Sapphire or silicon substrate
- Aluminium Josephson junctions

LARGE SCALE CHIPS

Requires:

- Multi-layer chips prevents routing issues
- Chiplet strategy¹ prevents chip yield limitation

Multi-layer

Beyond 100 logical qubits: hypotheses

Solution by QM

Exploring:

- cryogenic control electronics
- SFQ electronics (e.g. SeeQC)

INPUT/OUTPUT

Solution by IBM

Solution by Bluefors

To summarize

1. If there are no bit-flips QEC becomes more resource efficient

→ Alice & Bob is working on demonstrating this assumption

2. Cat qubit have similar needs as the other superconducting platforms

 \rightarrow mutualizing the development efforts are possible

5

 $|\alpha|^2$ 10

THANK YOU FOR YOUR ATTENTION !

Founded in 2020 Raised 30 M€ 100+ people (40+ PhD) Based in Paris 15^e Open positions (interns, PhDs, permanents)

03 Maintaining low bit-flips during operations

Leveraging a biased-noise qubit

X gate should convert $|0\rangle$ into $|1\rangle$

Passing through a "fragile" state converts a phase-flip into a bit-flip

Noise depolarizing *X* gate implementation

Bias-preserving X gate implementation

All physical gates should be bias preserving

Preserving bit-flips in the 1D repetition code

(+)

STABILIZERS $X_i X_{i+1}$

Target

- CNOT should not create data bit-flips.
- Ancilla bit-flip errors propagate to the data
- Only between the CNOT gates

Status of our CX development progress

Characterizing the CX gate

4.5

Universal logical set from bias-preserving operations

J. Guillaud and M. Mirrahimi Physical Review X 9, 10.1103 (2019) D. Litinski Quantum 3, 205 (2019) C. Gidney, A. G. Fowler Quantum 3, 135 (2019)

Origin of Hardware efficiency

Fowler et al. PRA 86 (2012) D. Ruiz et al. arXiv:2401.09541 (2024)