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Challenges for superconducting qubits

Quantum Architecture Quantum Hardware Enabling technologies

Reaching error rates below 10-6

Chip to chip connectivity

Mitigating cosmic rays and TLS

Cross-talk between control lines

Addressing power requirements

Millions of microwave lines

Cooling down > 105 qubits

Environmental impact

Efficient LDPC encoding

Tailoring algorithm to hardware

HOW DO WE PLAN TO ADRESS THESE CHALLENGES AT A&B ?

1. Use quantum architecture / hardware that minimizes qubit count
2. Make sure this architecture is compatible with global effort on enabling technologies
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01
Cat qubit 
architecture
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A hardware efficient strategy

100 logical qubits at 10-8

A 758 cat qubits memory (~1700 qubit for operations)
Assuming 𝐹𝐶𝑋 = 98.4% ( Τ𝜅1 𝜅2 = 10−4)
Local connectivity 5 (4 QEC + 1 logical ops)

D. Ruiz et al. arXiv:2401.09541 (2024)
DARPA Quantum Benchmark Initiative DARPA-PS-24-26 

KEY ASSUMPTIONS

Low bit-flips
(incl. during operations)

|0〉

|1〉

|+〉|−〉

Bit-flip  𝑿

Phase-flip  𝒁
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Using classical error correcting codes for remaining errors 

physical 𝑿 error × # physical qubits per logical ≤ logical 𝒁 error

What if there are “no” bit-flips ?  i.e. 

1.   Fowler et al. PRA 86 (2012)
2.  J. Guillaud and M. Mirrahimi Physical Review X 9, 10.1103 (2019)

Only one error has to be corrected by the code

Surface code1 Repetition code2
𝑿
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data qubit

ancilla qubit

Logical states: + 𝐿 = + + ⋯ + , − 𝐿 = | − − ⋯ −⟩ 
Logical operators: 𝑍𝐿 =  ⊗𝑖 𝑍𝑖 and 𝑋𝐿 = 𝑋𝑖

ENCODING

| ⟩+
𝑋

| ⟩+
𝑋

STABILIZERS 𝑋𝑖𝑋𝑖+1

A high threshold 1D repetition code

THRESHOLD

𝑁𝑍𝑑
 = Idle

𝑁𝑍𝑎
 = 𝑃 +

𝑁𝑍𝑎

𝑁
𝑍

𝑑

+ 𝐶𝑋 

+ 𝐶𝑋 + 𝑀𝑋 

High threshold due to:
• Higher code capacity
• Low weight stabilizer

Le Régent et al. Quantum 7, 1198 (2023)
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Classical LDPC code can be local in 2D

S. Bravyi et al. Nature 627, 778–782 (2024)
D. Ruiz et al. arXiv:2401.09541 (2024)

→ Requires long distance connections

QUANTUM LDPC CODE CLASSICAL LDPC CODE

→ Becomes local since long distance in    1D 
become short in 2D
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Low bit-flip qubits
≈

5
0

 J
J

𝑓 = 4 − 8 GHz
𝑄 ≈ 2 − 3 × 106

Τ𝐾 2𝜋 ≈ 100 kHz
𝛼 2 ≈ 10

M. Mirrahimi et al. New J. Phys. 16 045014

Distant mesoscopic states of light makes it 
unlikely for local noise to create a bit-flip

CAT QUBITS TWO-PHOTON STABILIZATION

Buffer Memory

|0⟩ |1⟩

Memory

Buffer
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Τ
𝛤 𝑋

2
𝜋

 [
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𝛼 2

𝑇 𝑍
 [

s]

𝛼 2

Dissipative cat-qubits

Phase-flips increase linearly 
 → 𝛤X = 2 𝛼 2𝜅1

Bit-flips are suppressed exponentially → 

𝛤Z ∝ 𝑒−2 𝛼 2

Z. Leghtas et al. Science 347, 853 (2015)
A. Marquet et al. Phys. Rev. X 14, 021019 (2024)                                                                                        U. Réglade, A. Bocquet et al. Nature 629, 778–783 (2024)

Typ. 𝑇𝑍 ≈ 10 s 
𝑇𝑋 = 1 µs

LIFETIMES

BIAS PRESERVING GATES

Control Target

Control Target

Τ𝐻𝐶𝑋 ℏ = 𝑔𝐶𝑋 𝑎𝐶 + 𝑎𝐶
† 𝑎𝑇

†𝑎𝑇

Typ. 𝑝𝑍 ≈ 10−4

 𝑝𝑋 = 15%

Make sure that bit-flips remain suppressed 
and phase-flip error are below error 
correction threshold
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Error rates saturation

1.   U. Réglade, A. Bocquet et al. Nature 629, 778–783 (2024)
2.  M. McEwen et al. arXiv:2402.15644 (2024)
3.  Google Quantum AI et al. arXiv:2408.13687 (2024)

BIT-FLIP SATURATION

Error saturation from high energy cosmic rays → JJ gap engineering 2

Long term drifts due to spurious TLS → prediction 3 

𝑇 𝑍
 [

s]

𝛼 2

Unknown origin 

GOOGLE’S HYPOTHESIS & SOLUTION

With gap 
engineering
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02
Enabling technology 
needs
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A hardware efficient strategy

100 logical qubits at 10-8

É. Gouzien, et al. Phys. Rev. Lett. 131, 040602 (2023)
D. Ruiz et al. arXiv:2401.09541 (2024)

Estimated 200-fold qubit count reduction 
compared to standard superconducting 
qubits with similar physical assumptions. 

1700 cat qubits

200 times less hardware should reduce:
• power required
• microwave lines
• qubits to cooldown

Close to the 
largest super-
conducting qubit 
chip by IBM

1121 qubits

TAYLORING ALGORITHMS

• FTQC optimization is vastly different from NISQ.
• Resource estimation is done by assuming logical gates 

happen one after the other.
 → Dedicated line of work, for compilation and 

architecture optimization. 
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Superconducting qubit fabrication bottleneck

Memory
Buffer
ATS
Filter

100 um

IMPLEMENTATION

Uses standard superconducting qubit 
components:
• planar fabrication techniques
• Sapphire or silicon substrate
• Aluminium Josephson junctions
• ...

LARGE SCALE CHIPS

1.  A. Gold et al. npj Quantum Inf 7, 142 (2021) 

Requires: 
• Multi-layer chips prevents routing 

issues
• Chiplet strategy1 prevents chip yield 

limitation

Multi-layer Chiplets
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Beyond 100 logical qubits: hypotheses
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CONTROL ELECTRONICS

Exploring: 
• cryogenic control electronics
• SFQ electronics (e.g. SeeQC)

Solution by QM

INPUT/OUTPUT

Solution by 
Bluefors

Solution by IBM

High density / Low thermal conductivity

CRYOSTAT

Larger monolithic 
cryogenic system

Target no room 
temperature 
connexions

Solution by Bluefors
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To summarize

1.   If there are no bit-flips QEC becomes more resource 
efficient
 → Alice & Bob is working on demonstrating this      
assumption

2. Cat qubit have similar needs as the other superconducting 
platforms

 → mutualizing the development efforts are possible

𝑇 𝑍
 [

s]

𝛼 2

Memory
Buffer
ATS
Filter

100 
um



THANK YOU FOR YOUR ATTENTION !

Founded in 2020
Raised 30 M€
100+ people (40+ PhD)

Based in Paris 15e

Open positions (interns, 
PhDs, permanents)
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03
Maintaining
low bit-flips 
during operations
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𝑋 gate should convert | ⟩0  into | ⟩1

|0〉

|1〉

| + 𝑖〉| − 𝑖〉

𝝅-rotation

Leveraging a biased-noise qubit

All physical gates should be bias preserving 

Phase-flip

Passing through a “fragile” state converts a 
phase-flip into a bit-flip

𝐻

Hadamard:

𝑍𝐻 = 𝐻𝑋

𝑋

NOT:

𝑍𝑋 = 𝑋(−𝑍)

𝑋

actual NOT:

𝑋 Z 𝑋 = 𝑋𝑌

𝑋
Noise depolarizing 𝑋 gate implementation

time

Bias-preserving 𝑋 gate implementation

time

J. Guillaud and M. Mirrahimi Physical Review X 9, 10.1103(2019) 
S. Puri et al., Science Advances 6, eaay5901 (2020)
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| ⟩+
𝑋

| ⟩+
𝑋

STABILIZERS 𝑋𝑖𝑋𝑖+1

Preserving bit-flips in the 1D repetition code

data qubit

ancilla qubit

Logical states: + 𝐿 = + + ⋯ + , − 𝐿 = | − − ⋯ −⟩ 
Logical operators: 𝑍𝐿 =  ⊗𝑖 𝑍𝑖 and 𝑋𝐿 = 𝑋𝑖

ENCODING

• Ancilla bit-flip 
errors propagate to 
the data

• CNOT should 
not create data 
bit-flips. 

• Only between the 
CNOT gates

CNOT PRINCIPLE

Control Target

Τ𝐻𝐶𝑋 ℏ = 𝑔𝐶𝑋 𝑎𝐶 + 𝑎𝐶
† 𝑎𝑇

†𝑎𝑇

Control Target

Control Target
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Status of our CX development progress

At start                            (|𝛼⟩ + | − 𝛼⟩)⨂( 𝛼 − | − 𝛼⟩)AT START After ½ CNOT                α ⨂(|iα⟩ − | − iα⟩) + −α ⨂(|α⟩ − | − α⟩)DURING CX

After full CNOT (|α⟩ − | − α⟩)⨂( α − | − α⟩)AFTER CX After re-stabilisation      (|α⟩ − | − α⟩)⨂( α − | − α⟩)AFTER RESTAB.
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𝑝
𝑋

 T
ar
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t

𝛼 2 Target

Characterizing the CX gate

Control 𝒞𝛼
+

sNumber of CXs

𝛽

Target 𝒞𝛼
−

𝛽

Number of CXs

𝑍 ERRORS 𝑋 ERRORS

𝑝𝑍 ≈ 15 %

Limited by leakage when stabilization off

• Reduce Kerr and dephasing
• Engineer conditional target dissipation

J. Guillaud and M. Mirrahimi Physical Review X 9, 10.1103 (2019)



22

Universal logical set from bias-preserving operations

Physical

Noisy Logical

Logical

Demonstrated

To Do

|𝟎⟩ |𝟎⟩

𝑻 𝑻|𝑻⟩ |𝑻⟩𝑻

distillation

𝑴𝑿/𝒁𝑴𝑿/𝒁

𝑪𝑿∗𝑪𝑿 𝑪𝑿

|𝒊⟩𝑪𝒁 𝑺/𝑸 𝑯𝑺

|+⟩ |+⟩

𝑿/𝒁𝑿/𝒁

Universal set

J. Guillaud and M. Mirrahimi Physical Review X 9, 10.1103 (2019)
D. Litinski Quantum 3, 205 (2019)
C. Gidney, A. G. Fowler Quantum 3, 135 (2019)
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Origin of Hardware efficiency

Fowler et al. PRA 86 (2012)
D. Ruiz et al. arXiv:2401.09541 (2024)

1. Classical codes are sufficient

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

    

2.   High threshold

𝑁𝑍𝑎

𝑁
𝑍

𝑑

3.   LDPC codes can be local
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