

What is a quantum sensor?

Units	Defining constants	Symbol	Numérical value
kilogram	Planck constant	h	6,626 070 15 x 10 ⁻³⁴ J s
metre	Speed of light in vacuum	С	299 792 458 m s ⁻¹
second	Hyperfine Transition frequency of caesium atom	Δv_{CS}	9 192 631 770 Hz
ampere	Elementary charge	е	1,602 176 634 x 10 ⁻¹⁹ C
kelvin	Boltzmann constant	K	1,380 649 x 10 ⁻²³ J K ⁻¹
mole	Avogadro constant	NA	6,022 140 76 x 10 ²³ mol ⁻¹
candela	Luminous efficacy	K _{cd}	683 lm W ⁻¹
			from LNE website

ISU since 2019

Corporate Sensitivity PUBLIC	🛙 Naval Group 2024 - All rights reserved	14/11/2024	2	

A WORLD OF MEASUREMENTS

Size, volume, wavelength, temperature, density, concentration, luminosity, flow, time, acceleration, weight, magnetization, pressure, speed, displacement, electrical potential, altitude, frequency, voltage, sound level, position, resistance, depth

There are so many physical quantities to monitor

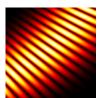
... a lot more sensors available

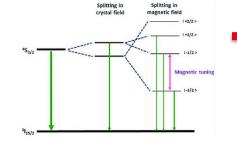
... depending on the experimental environment

... and on the intended measurement characteristics

Quantum sensors are new devices to add to our toolbox

Corporate Sensitivity


PUBLIC


3

Quantum <u>sensors</u>

- Position, time, frequency
- Speed, acceleration, rotation
- Electromagnetic and gravitationnal fields
- Temperature, pression
- Luminosity

Clock

Accelerometer, gyrometer

Magnetometer

Antenna, RF filter, gravimeter

Photodetector, LED

Strain sensor, resistive sensor

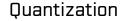
> Precise measurements possible via optical or atomic interferometry and direct coupling of the probed phenomena with the particle states.

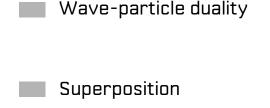
Light sources (LED, lasers)

Microwave

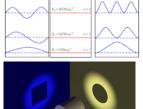
generator

Everything is « quantum »

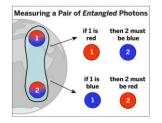

> The setup exploits fundamental quantum mecanisms which embed the physical properties to be measured at the particle scale.


Target

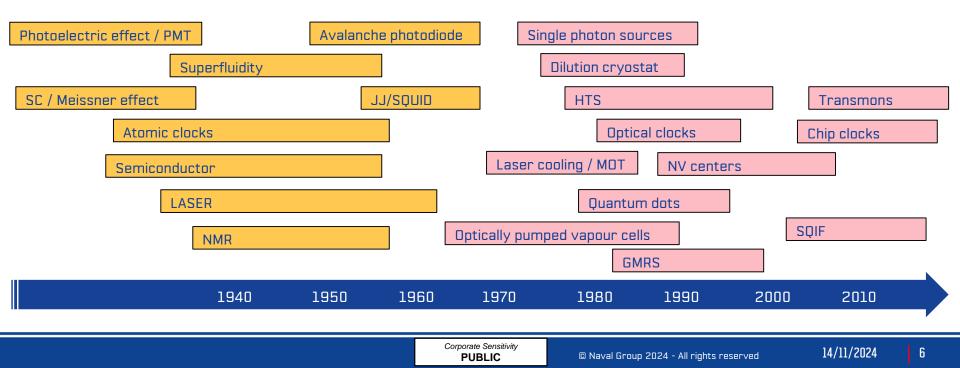
(diamond, gaz)


Photodetector

Optical filters



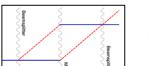
Entanglement



5

First Generation of technologies (basic use of quantum effects)

vs Second Generation (dedicated use of superposition, entanglement + individual manipulation) Where does it start and when does it end ?

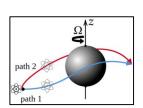


© Naval Group 2024 - All rights reserved

14/11/2024

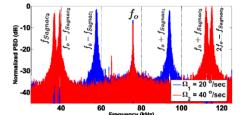
Related to atomic states

Related to optical wavelengths

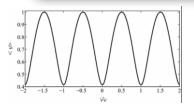


Cold/trapped atoms and ions, in hyperfine states sensitive to EM fields, accelerations, rotations perpendicular to the motion, creating a dephasing between two populations.

High-precision clocks, gravimeters, IMUs with magneto-optical traps

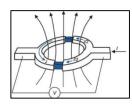

Corporate Sensitivity

PUBLIC



RLG and **FOG** sensitive to rotations perpendicular to the optical loop, creating a dephasing between the laser beams.

Room temperature stable gyroscopes



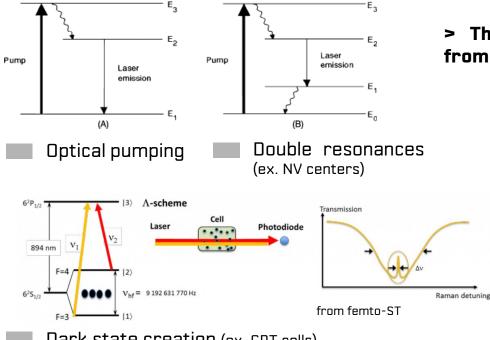
Atom fringes

QUANTUM DEPHASING EFFECTS

Related to EM fields

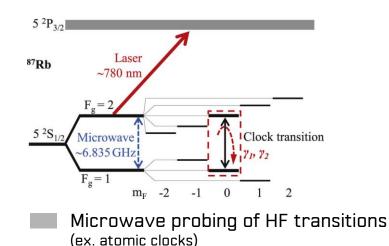
SQUID loops sensitive to incoming magnetic flux, creating a periodic dephasing of the outgoing supercurrent.

Relative magnetometers / RF antenna with cryogenics


14/11/2024

8

Fine or hyperfine level transitions, when correctly engineered, can be used to probe atomic states whose properties are correlated to a physical quantity.


Corporate Sensitivity

PUBLIC

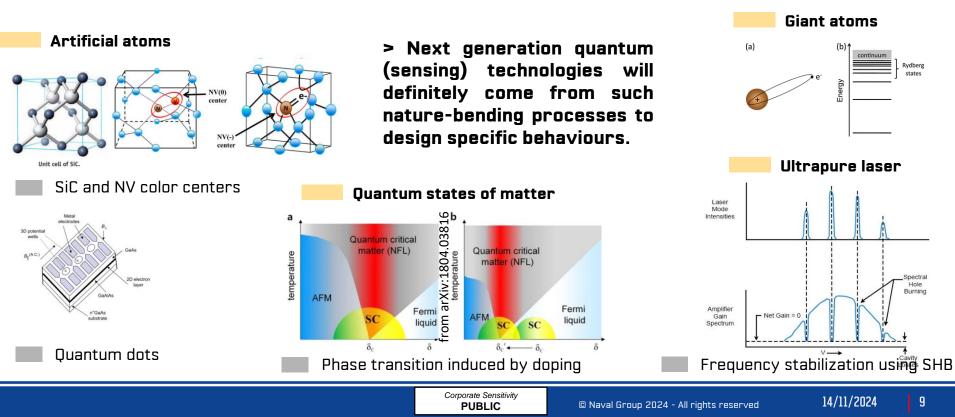
> These readout techniques bring information from the quantum world to the macroscopic scale

C Naval Group 2024 - All rights reserved

Dark state creation (ex. CPT cells)

ATOMIC ENHANCEMENT TECHNIQUES

Rydberg


states

Spectra

Burning

9

When nature does not give the structure fitted for a measurement, why not forcing it to exist?

And then mix all these elements

... add some quantum networks to distribute the states

... maybe send them to QC for « quantum analog treatments »

--- --- ---

> As industrial end users are not fundamental physics researchers, keep it mind that sensor improvement is not the only way to push further the limit

- if and only if there is indeed a real need to go deeper ! -

			ji sa
Corporate Sensitivity PUBLIC	© Naval Group 2024 - All rights reserved	14/11/2024	10

Thank you for your attention

Corporate Sensitivity PUBLIC

© Naval Group 2024 - All rights reserved

