

Metrology solutions with diamond quantum sensors

Teratec

KWAN-TEK - Thomas Hingant

November 14th 2024

KWAN-TEK: Startup in Quantum Sensing

Founded in April 2020 (Lorient, France)

Metrology solutions based on diamond quantum sensors

Pioneer French SME on diamond quantum sensors

What can (diamond) quantum sensors bring to the industry?

 \bigcirc

The NV centre in diamond

The NV centre in diamond is an atomic defect, perfectly photostable

Electronic spin S=1, optically adressable

an•tek

2 key properties:

Under green light excitation

- Initialisation into $|m_s = 0\rangle$
- Optical readout

Optically detected magnetic resonance (ODMR)

These slides are the property of KWAN-TEK - Reuse not permitted

NV magnetometry

With a magnetic field: degeneracy between + 1 and -1 is lifted (Zeeman effect)

A bulk diamond is an excellent magnetometer

- High resolution, small size (10 ~ 100 μm)
- Vectorial (3 axes)
- Quantitative and absolute (no calibration)
- High sensitivity ($\leq nT/VHz \rightarrow 10 pT/VHz^*$)
- Robust

Bulk diamond: 4 possible orientations

for which applications?

*See for example J. F. Barry, et al. "Optical magnetic detection of single-neuron action potentials using quantum defects in diamond," PNAS (2016).

These slides are the property of KWAN-TEK – Reuse not permitted

Development of new applications

The NV centre is an excellent magnetometer

 \rightarrow unique combination of resolution – accuracy – integration

Many techniques already make use of the magnetic field for NDT (magnetoscopy,

Eddy current, Barkhausen noise, ...)

These slides are the property of KWAN-TEK – Reuse not permitted

NV sensing for non-destructive testing

Goal: improve magnetic-based detections with NV sensors

DC sensing: e.g. magnetic flux leakage

AC sensing: e.g. Eddy currents

DC Sensing: MFL

Principle: local defects such as cracks in steel give rise to stray magnetic fields (as soons as $\operatorname{div}(\vec{M}) \neq 0$) \rightarrow Scan a magnetometer close to the part to measure stray fields and detect defects.

Quick imaging: iso-field (iso-B)

Iso-field maps are obtained by fixing the microwave frequency **Field contours** are observed, corresponding **to a given projection of the magnetic field** (cf. relief maps)

magnetization

Sample SFNDT_02

Iso-B maps contains vectorial and quantitative information about the magnetic field

Example of results (1) Detection and quantification of small defects by magnetic field imaging

- Holes between 200 μ m and 1.4 mm
- Image taken at remanence

Example of results (2)

Defect in complex geometries

Damaged gear > 5

Sub-millimetre hole in a steel tube (300M)

Quick and quantitative maps with resonance tracking

Example: detection of grinding burns in steel

Y (mm)

Photograph (after chemical revelation)

These slides are the property of KWAN-TEK - Reuse not permitted

(MHz/mm²)

NV sensing for non-destructive testing

Goal: improve magnetic-based detections with NV sensors

DC sensing: e.g. magnetic flux leakage

AC sensing: e.g. Eddy currents

Eddy current testing

The induced field is altered

Eddy current testing

Effect of frequency

Frequency needs to be lower to inspect deeper in metals

 \rightarrow the induced field is weaker and the noise of classical probes increases (1/f).

These slides are the property of KWAN-TEK – Reuse not permitted

NV for eddy current testing

Advantage of NV for eddy currents:

- Improve the resolution (reducing the surface of classical probes reduces the sensitivity).
- Increase measurement depth with lower frequencies ٠

	Classical sensors	NV
Depth in steels	~ 1-3 mm	~ 10 mm
Resolution	~ 1 mm	< 100 µm

Eddy-currents

Induced magnetic field (secondary)

Advantages of NV for NDT

Reliable and efficient

- High sensitivity (< nT/VHz)
- High resolution (< 10 μm achievable)
- Quantitative and no calibration
- Digital measurement

Easy implementation

- Small probe (sub-mm) for difficult geometries
- Ready-to-use (no coupling fluid, no preparation)
- Detection through paints and coatings

Conclusion – what can quantum sensors bring to the industry?

Diamond quantum sensors push back the limits of classical sensors:

- Better sensitivity vs. resolution
- No calibration
- Easy integration, small size
- \rightarrow this opens new perspectives for applications

We think that diamond sensors can improve existing magnetic-based NDT techniques (MFL, EC ...)

 \rightarrow incremental change of the existing (cost efficient)

... which can still detect undetectable critical defects (hydrogen, nuclear, aeronautics...)

More sensitive, more efficient, not more complicated

Thank you

