

Smart-charging & neutral atom QPUs

AQADOC, Sorbonne Université

Constantin DALYAC, Tech lead @Pasqal

Pasqal at a glance

40+

Clients & Partners

2 QPUs sold via HPCQS framework, activities in 1° countries, and engagements with top cloud distributors.

260+

Employees 70+PhD 18 nationalities

55+

Patents & Applications

800+ publications

Qubits for 2026-2027

 \rightarrow 10k

Single shot 1100+ atoms in 2024

40

Years History in quantum technologies

Full-Stack

Quantum HW & SW

Quantum advantage in 2025

Neutral Atom QPUs

 $|0\rangle$

 $|0\rangle$

 $|0\rangle$

 $|0\rangle$

 $|0\rangle$

 $|0\rangle$

 $|0\rangle$

 $|0\rangle$

 $|0\rangle$

Cons

Analog Control

Programming a Hamiltonian sequence

Parameters can be tuned continuously. The Hamiltonian faithfully describes the dynamics of a physical quantum system.

Gate-based Control

Programming a quantum circuit with digital quantum gates

Elementary operations are discrete digital quantum gates, that can act either on individual aubits, or on several qubits at the same time.

Pros

Quantum computing with Rydberg atoms

Rydberg state Laser controlled particles + Many body interactions = Quantum dynamics $|r\rangle$ $\delta(t)$ $\Omega(t), \delta(t)$ Laser addressed $\Omega(t)$ time (µs) transitions 00.51.5 6.0 $|g\rangle$ $H = H_{\Omega,\delta}(t) + H_{dd}(r)$ Ground state $|\psi(t=0)\rangle = |g \dots g\rangle$ $|\psi(t=T)\rangle$ 1.5 **Dipole-dipole interactions** 0 ~ 100 nm 1.0 1 Blockade e 0.5 Flip-flop 0.0 *R* ~ μm 0.50 1.50 1.75 0.00 0.25 0.75 1.00 1.25 2.00 States x 10¹⁹

Δ

Scheduling to MIS problem

Optimal scheduling of load time intervals within groups [1]

We are given a set of load tasks represented by **intervals**, each of them belonging to a **group** (fleet, operator, etc.) We aim to select a subset of these loads such that:

- 1. At most one load in each group is selected for completion [no group is over-represented]
- 2. The number of non-overlapping tasks is maximized [minimizing completion time]

[1] Dalyac et al. EPJ Quantum Technology 8.1 (2021): 12.

Hardware results

🔅 Pasqal

- Two stylized problems have been investigated from the field of smart-charging of electric vehicles in this collaboration between EDF and Pasqal
- Quantum hardware-efficient implementations have been proposed, investigated and implemented on a real world EV charging dataset (of 2250 instances).
- Quantum algorithms obtain high approximation ratio coherently.
- Hardware implementation confirm predicted precision rates through simulations.
- More efficient hybrid (quantum-classical) approaches are in line for testing which promise an actual performance gain as compared to best-in-class classical approximative methods.
- Distributed QC can be leveraged to encode a new range of hybrid architectures.

