
2/10/2024Parallelisation : 3 mindsets and 3 use cases



Planning

02/20/2024

• The three mindsets of parallelisation
• Our first questions and ideas 



Three Mindset of Parallelisation

Date

• There’s three ways to think of parallelization 
• 1. Take a circuit and cut it 
• 2. Parallelize the very primitives
• 3. Take a use case and think it in a parrallel way 



Mindset#1

Cutting the circuits



Mindset #1 

Take a circuit and cut it 

Credits : Review of Distributed Quantum Computing. From single QPU to High 
Performance Quantum Computing (2024)

Compilation Code Algorithm



Mindset #1
Circuit Knitting 

A compilation topic

Circuit Knitting 
- Depends on the capacity of the hardware 
- Mid Circuit measurement, teleportation changes the 
way it works 

➔ This is a compilation issue which relies on 
combinatorial optimization and proper to each 
hardware

Compilation Code Algorithm



Mindset#2

Parallelizing the primitives



Mindset #2 

Parallelize the very primitives

Compilation Code Algorithm

Some very basic operations can be parallelized e.g. 
addition
In the classical world, all the linear algebra stuff is 
parallelized. 
The end user just have to use the proper libraries

This may be considered as a compilation topic



Mindset #2 

Parallelize the very primitives

Compilation Code Algorithm

Quantum algorithms are represented by a couple of 
algorithms that may be considered as higher order 
primitives : 
- Phase Estimation 
- QFT
- Variational Algorithms
- Quantum Walks? 

This becomes a between code and compilation 
topic



Mindset #2 

Parallelize the very primitives

Compilation Code Algorithm

- Consider Ax = B
 In the classical paradigm this has been 
parallelized and optimized for some matrices (Toeplitz, 
sparse, …)

Question : Do we have to find out matrices adapted to 
the Quantum parallelization ? 

If so this becomes an algorithm topic



Mindset#3 

Parallelize the algorithms



Mindset #3 

Parallelize the very primitives

Compilation Code Algorithm

Most of the benefits we had with HPC was obtained 
thanks to parallelization.

They were not obtained via an automatic multi 
processing compilation

The design of the algorithms themselves were made 
having parallelization in mind 



Mindset #3 

Parallelize the very primitives

Compilation Code Algorithm

Linear Solving Problems benefits from 
parallelization from a special set of 
matrices (Toeplitz, Sparse, …) 

 

Branch and bound optimization 
algorithm may be parallelized. 

Another framework well suited for 
parallelization is column generation
 



We place ourselves in 
the third mindset

Disclaimer : The maths of it all remains to be done

What follow are questions



Maximum Independent 
Set

Parallelize the very primitives

Compilation Code Algorithm

Questions 
Can we identify a nice way to cut off the graph such that it allows to avoid some column generation stuff? 
Can we quantify the benefit of it? 
Can it alleviates the UD constraint? At least locally? 



Quantum Walks

Parallelize the very primitives

Compilation Code Algorithm

Questions 
How to cut off the tree of interest and which links has to be considered? 
What kind of walks can be cutted efficiently. 
Are they close to our use cases? 



Coupled PDEs

Compilation Code Algorithm

Questions 
Is parallelization of any interest on coupled PDE? 

VQE used to solve 
Hydro PDE

VQE used to solve 
mecha PDE



Insérez ou glissez-déplacez votre photo ici

NOM

Thanks


	Diapositive 1
	Diapositive 2
	Diapositive 3
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15
	Diapositive 16
	Diapositive 17
	Diapositive 18

