

SCALING CAT OUBITS WITH ENABLING TECHNOLOGIES

Rémi de La Vieuville TQCI / September 5, 2024

Quantum computing revolution will be unlocked by error rate reduction.

Enabling technologies is one of the main challenge for scalability.

Scaling cat qubits

Cat qubits are hardware efficient

Subtitle of your slide

ن ن

FULL-FLEDGED QUANTUM COMPUTER

RESOURCE ESTIMATE

THE LAST DASH TO USEFUL QUANTUM COMPUTING SAVING ON HARDWARE

Alice & Bob latest research

shows how to reduce the footprint of a powerful quantum computer by **200-fold**

It is one step further making quantum computing realistic, earlier

In collaboration with INRIA

In 2026, our 40-cat chip will demonstrate FTQC

Key success factors FTQC • demonstration 40 Cat Qubit chip Long lived logical qubit Entangling logical gates Real-time error correction decoder Complete firmware platform Ready-to-scale FTQC architecture

All-to-all logical connectivity

This demonstration will enable manufacturing outsourcing and architecture scaling to build the 1st FTQC

 Δ

1

 \checkmark

Note

Tape out date

Calibrating

Dev. phase

date

Scaling the cat qubit chip

Sca

Scaling enabling technologies

The example of Control Electronics

Control Electronics

OPX+, Octave, APMS

Cat qubits need pulses

To stabilize and operate cat qubits, pulses are sent through RF channels (carrier @4-9GHz).

There is an extreme need of phase coherence between output channels.

Similarly, input channels receive pulses to enable **feedback** on next pulses to be sent.

DDS architecture

FIG. 1. The Quantum Instrumentation Control Kit (QICK). The QICK consists of two pieces of hardware: the commercial ZCU111 RFSoC evaluation board (left), which connects to the QICK RF board (right) which can be used for additional signal up/downconversion, amplification and filtering.

Direct Digital Synthesis use RF DACs that operates at high enough sampling rates that enable to directly synthesize microwave pulses without upconversion.

Example : QICK [2022]

Analog quality

- Analog quality is measured through :
- Frequency precision and stability
- Bandwith
- Spectral purity
- Phase noise
- Amplitude deviation
- Jitter
- Possible artifacts
- Power efficiency

Those needs and bandwith range are very similar to 5G / radars requirements.

Digital expressiveness

FPGA main buiding blocks are typically:

- NCO
- Digital up/downconversion
- Pulse library
- Processor for custom timed instructions
- Feedback logic
- 1/0

Control electronics will soon face obstacles to improve phase coherence, latency, density, and **scalability**

Core competences rely on generating high quality **RF pulses**

#1 Defining analog quality

 $s_1(t) = A_1 cos(\underbrace{\omega_1 t + \phi_1^{init}}_{phase})$

$$s_1(t) = A_1 cos(\underbrace{\omega_1 t + \phi_1^{init}}_{phase})$$

$$s_1(t) = egin{array}{c} (A + \delta A_{cst} + \delta A(t) + \delta A_{rel}(t)) \ cos(egin{array}{c} (\omega + \delta \omega_{cst} + \delta \omega(t) + \delta \omega_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}(t)) \ t + egin{array}{c} (\phi + \delta \phi_{cst} + \delta \phi(t) + \delta \phi_{rel}$$

#2 Challenges with SW integration

#3 Defining testbench needs

#4 Assessing the ecosystem

#5 Defining a strategy (« Make or buy »)

Partnerships

Partnerships will enable to explore **new paradigms** to control cat qubits at scale

- RF signal processing
- ASIC
- Error Correction
- CryoCMOS
 - Optics
- SFQ
- Superconducting

THINK NSIDE THE BOX