
Teratec – TQCI | September 5th, 2024

Needs for middleware in

Quantum Computing

Philippe DENIEL (philippe.deniel@cea.fr)

IT’S A KIND OF MAGIC…

 The end of the 19th century was an era of “science

wonders”, illustrated by writers such as Jules Verne

 Quantum Computing brings a new Science Wonders era

 On some aspects, it’s a kind of magic…
“Any sufficiently advanced technology is undistinguishable from magic” (Arthur C. Clarke)

 When it comes to integrate QC and HPC we quickly come

back to reality

 I have a brand new QPU in my machine room, how do I make

it work with the already installed HPC resources?

2Teratec – TQCI | September 5th, 2024

Teratec – TQCI – 05/09/2024 3

1. A

WHAT QC BRINGS TO HPC

 From a very high-level point of view

 A QPU is an instrumented experience of quantum physics

 This experience can be mapped to a mathematical problem (often a NP-C one)

 QC makes it possible to address NP problems, inaccessible to standard HPC

 QPU is interesting in a HPC context

 It should be seen as an accelerator to solve NP problems

 QPU brings new compute methods, like GPUs

 QC is fundamentally to be used with HPC

 You do NOT run an Operating System on a QPU and you NEVER will

 QPUs are accelerators, like GPUs

 QC is an ancillary compute technology

Teratec – TQCI – 05/09/2024 4

1. A

NUMERICAL METHODS: THE EASY COUPLING

 QPUs are accelerator to address NP problems

 NPC problems are particularly interesting

• NP problems can be turned in NPC problems at the cost of a P transformation (doable via HPC)

• Catalog of NPC problems exist (Karp’s list): TSP, MIS, QUBO, SAT,…

 A natural approach: building libraries focused on numerical problems

 It’s natural to think about building libraries solving classical NPC problems

 This will hide the complexity of QPU programming as well as providing QC benefits

 This path is natural (e.g: QUBO is implemented by D-Wave, MIS is implemented by Pasqal)

 Is it enough ?

 It just offer an algorithmic coupling

 The system related aspects are not addressed by this approach

Teratec – TQCI – 05/09/2024 5

SYSTEM INTEGRATION: WHAT WE NEED

 Standard HPC relies on well known and well defined concepts

 Source code: human-readable text describing the program as a set of instructions

 executable : a set of instructions to be executed on the CPU

 compilation: operation that turn a source code into an executable

 job: running the executable once or several times to perform computation

 scheduling: optimizing the use of compute resources to run as many jobs as possible

From a very high-level point of view, HPC/QC integration should look like this

Teratec – TQCI – 05/09/2024 6

WHAT WE HAVE: THE QUANTUM PRINTER

 What is generally provided is

 A python framework able to submit computation to the QPU

 Most of the time, that’s all we have

 We know this model well: this is how a USB attached printer works!

 Today’s QPU are just “Quantum Printer”

 This is not enough!!! ;-)

Teratec – TQCI – 05/09/2024 7

NEED FOR STANDARDS

 HPC interfaces are standardized
• Protocols and paradigms exist, each is well described by documents (usually RFC from the IETF)

 No established standard currently exists in QC

• The word “qubit” itself is quite polymorphic and has different meaning across vendors

• Standardization international groups are working on this matter

 In order to perform HPC/QC integration, you’ll need to forge your own weapons

 Define a common QC vocabulary

 Define a software stack, compatible with HPC integration

 Performances

 Linpack has defaults, build it is a strong backbone in the HPC community via the Top500

 QC has nothing like Linpac… what should QC benchmarks be? (BACQ)

Teratec – TQCI – 05/09/2024 8

SCHEDULING / ACCOUNTING / AUTHENTICATION

 Scheduler point of view: a QC job is actually a mix of HPC and QC steps

 The HPC bootstraps the simulation

 This HPC steps do “rifles” of QC jobs (such as QAOA)

 The QC steps use the QPU is an exclusive mode (the QPU currently can’t be shared among users)

 QC results are processed by HPC

 The scheduler has to handle both HPC and QC resources (hybrid scheduling)

 Scheduling in not the only required feature

 Running jobs consume QPU time to be accounted, and later billed to the right users

 Billing the right user means that is has been fully authenticated

 In order to run a QC job, the accesses to the QPU have to handle those two aspects

 Most of the available QC programming framework (usually Python libraries) do not handle them

Teratec – TQCI – 05/09/2024 9

BUILDING A QC JOB

 Defining a job means converting a QC source code to a QC executable

 The job is to be compiled from the source before scheduling it

 It is necessary to define a QC executable format, agnostic to any QPU technology

• QIR and QASM/OpenQASM are good candidates

 Compiling to QPU is more complicated than compiling to CPU

Each technology comes with its contraints

• Possible entanglements between qubits

• Available quantum gates

How do you express the constraints related to the technology?

• Width and depth of the circuit: number of available gates and qubits

• Compilation has to implement on-the-fly transpilation

Teratec – TQCI – 05/09/2024 10

HPC/QS IMPLEMENTATION 1/2

In the scope of the HPC/QS project, a Pasqal QPU was acquired

 The QPU is currently under installation at the TGCC facility

 Qaptiva is used as a proxy to the Pasqal system

Users connect to Qaptiva, it handles the authentication and accounting features

Qaptiva schedule the jobs and send them to the QPU via the QLM/interop protocol

QLM/Qaptiva (without the simulation engines) helps building the first bricks of a

middleware, providing a generic and efficient “quantum proxy”

 QC program steps are currently written in Python

 The program is initially encoded using the Pulser framework from Pasqal

 The Pulser code is wrapped in QLM syntax via the Pulser-myQLM binding module

Teratec – TQCI – 05/09/2024 11

HPC/QS IMPLEMENTATION 2/2

Teratec – TQCI – 05/09/2024 12

HPC/QS IMPLEMENTATION : CODE SAMPLE

Convert the Sequence to a Job

job = IsingAQPU.convert_sequence_to_job(seq, nbshots=0, modulation=True)

Simulate the Job using pulser_simulation

aqpu = IsingAQPU.from_sequence(seq, qpu=None)

result = aqpu.submit(job)

print(

"MyQLM Result obtained using IsingAQPU with pulser-simulation with "

"default number of samples (2000):"

)

print(result, "\n")

print(

"Expressed as a dictionary of (state: probability): ",

{sample.state: sample.probability for sample in result},

"\n",

)

print("Converted into a Pulser Result:")

print(IsingAQPU.convert_result_to_samples(result), "\n")

Simulate the Job using AnalogQPU

try:

from qlmaas.qpus import AnalogQPU

analog_qpu = AnalogQPU()

aqpu = IsingAQPU.from_sequence(seq, qpu=analog_qpu)

results = aqpu.submit(job)

Display the results once they have run on AnalogQPU

print("Results obtained with AnalogQPU: ", results.join())

print(

"Expressed as a dictionary of (state: probability): ",

{sample.state: sample.probability for sample in results},

"\n",

)

except ImportError:

print("Can't import AnalogQPU, check connection to Qaptiva Access.")

import numpy as np

from pulser import Pulse, Register, Sequence

from pulser.devices import AnalogDevice

from pulser.waveforms import CustomWaveform

from pulser_simulation import QutipEmulator

from pulser_myqlm import IsingAQPU

Pulser Sequence (find more at https://pulser.readthedocs.io/)

device = AnalogDevice

register = Register.square(2, 5, None)

seq = Sequence(register, device)

seq.declare_channel("ryd_glob", "rydberg_global")

duration = 100

seq.add(

Pulse(

CustomWaveform([ti / duration for ti in range(duration)]),

CustomWaveform([1 - ti / duration for ti in range(duration)]),

0,

),

"ryd_glob",

)

seq.add(Pulse.ConstantPulse(20, 1, 0, 0), "ryd_glob")

seq.add(Pulse.ConstantPulse(20, 1, 0, np.pi / 2), "ryd_glob")

Draw the Sequence

seq.draw(draw_phase_curve=True)

Simulate the Sequence using Pulser

sim = QutipEmulator.from_sequence(seq, with_modulation=True)

res = sim.run().sample_final_state(2000)

print("Pulser Result obtained with pulser_simulation for 2000 samples:")

print(res, "\n")

print("Converted into MyQLM Result:")

print(IsingAQPU.convert_samples_to_result(res), "\n")

print(

"Expressed as a dictionary of (state: probability): ",

{

sample.state: sample.probability

for sample in IsingAQPU.convert_samples_to_result(res)

},

"\n",

)

Teratec – TQCI – 05/09/2024 13

FUTURE CHALLENGES

 Implement more sophisticated scheduling models

 The current model is very close to a network spooler

• Dedicated studies, coupling HPC and QC steps are to be done

• Using HPC scheduler (such as Slurm) is a promising path

 What about “embarrassingly quantum” job?

• Can I run several jobs at the same time, splitting the qubits in several packs?

• What are the impact (noise, unwanted entanglements) of one job to the others?

 Future QPU may be able to be shared across multiple users: how should this be handled?

 Current programs are written in Python

 C++ codes with explicit quantum subroutines are the next steps

 This emphasizes the need of standardized QC compilers and QC executable formats

Teratec – TQCI – 05/09/2024 14

TOWARDS OPENSOURCE STANDARDS

 Full stack approach in HPC has proven its weaknesses

 Generic and standardized OS and libraries, as Linux provides, was a major improvement in HPC history

 Open-sources middleware should be defined

 Standardized API and libraries to address well known NPC problem

• Will help in using QUBO or MIS as building blocks to create complex HPC/QC program

• Tools to help turning NPC problems to NP problems using HPC

 Standardized system framework to wrap a QPU from the system point of view

• Will help in providing proxy to implement authentication / accouting / scheduler on top of QPU

 Compilers are to be standardized

 Agreeing on an established QC executable format

 Building a “quantum gcc” capable of handling any kind of QPU with their own constraints

 Defining what a hybrid C++ HPC/QC syntax should be

15

THANK YOU

philippe.deniel@cea.fr

HQI France

@HQI_France

Teratec – TQCI | September 5th, 2024

mailto:philippe.deniel@cea.fr

Teratec – TQCI – 05/09/2024 16

BACKUP SLIDES

Teratec – TQCI – 05/09/2024 17

1. A

QPUS INSIDE THE COMPUTE CENTER

 QC is currently focusing on “deep tech” aspects

 How physics can be used to compute

 Potential advantages of some technologies against other

 QC is not a standalone technology

 It can be optimized/helped by HPC as well as it optimizes/helps HPC (e.g. QAOA)

 QC is very good at some tasks (DFT as QFT) and quite bad at others (addition)

 You do NOT run an Operating System on a QPU and you NEVER will

 QC is fundamentally to be used with HPC

 QPUs are accelerators, like GPUs

 QC is an ancillary compute technology

