
Teratec – TQCI | September 5th, 2024

Needs for middleware in

Quantum Computing

Philippe DENIEL (philippe.deniel@cea.fr)

IT’S A KIND OF MAGIC…

 The end of the 19th century was an era of “science

wonders”, illustrated by writers such as Jules Verne

 Quantum Computing brings a new Science Wonders era

 On some aspects, it’s a kind of magic…
“Any sufficiently advanced technology is undistinguishable from magic” (Arthur C. Clarke)

 When it comes to integrate QC and HPC we quickly come

back to reality

 I have a brand new QPU in my machine room, how do I make

it work with the already installed HPC resources?

2Teratec – TQCI | September 5th, 2024

Teratec – TQCI – 05/09/2024 3

1. A

WHAT QC BRINGS TO HPC

 From a very high-level point of view

 A QPU is an instrumented experience of quantum physics

 This experience can be mapped to a mathematical problem (often a NP-C one)

 QC makes it possible to address NP problems, inaccessible to standard HPC

 QPU is interesting in a HPC context

 It should be seen as an accelerator to solve NP problems

 QPU brings new compute methods, like GPUs

 QC is fundamentally to be used with HPC

 You do NOT run an Operating System on a QPU and you NEVER will

 QPUs are accelerators, like GPUs

 QC is an ancillary compute technology

Teratec – TQCI – 05/09/2024 4

1. A

NUMERICAL METHODS: THE EASY COUPLING

 QPUs are accelerator to address NP problems

 NPC problems are particularly interesting

• NP problems can be turned in NPC problems at the cost of a P transformation (doable via HPC)

• Catalog of NPC problems exist (Karp’s list): TSP, MIS, QUBO, SAT,…

 A natural approach: building libraries focused on numerical problems

 It’s natural to think about building libraries solving classical NPC problems

 This will hide the complexity of QPU programming as well as providing QC benefits

 This path is natural (e.g: QUBO is implemented by D-Wave, MIS is implemented by Pasqal)

 Is it enough ?

 It just offer an algorithmic coupling

 The system related aspects are not addressed by this approach

Teratec – TQCI – 05/09/2024 5

SYSTEM INTEGRATION: WHAT WE NEED

 Standard HPC relies on well known and well defined concepts

 Source code: human-readable text describing the program as a set of instructions

 executable : a set of instructions to be executed on the CPU

 compilation: operation that turn a source code into an executable

 job: running the executable once or several times to perform computation

 scheduling: optimizing the use of compute resources to run as many jobs as possible

From a very high-level point of view, HPC/QC integration should look like this

Teratec – TQCI – 05/09/2024 6

WHAT WE HAVE: THE QUANTUM PRINTER

 What is generally provided is

 A python framework able to submit computation to the QPU

 Most of the time, that’s all we have

 We know this model well: this is how a USB attached printer works!

 Today’s QPU are just “Quantum Printer”

 This is not enough!!! ;-)

Teratec – TQCI – 05/09/2024 7

NEED FOR STANDARDS

 HPC interfaces are standardized
• Protocols and paradigms exist, each is well described by documents (usually RFC from the IETF)

 No established standard currently exists in QC

• The word “qubit” itself is quite polymorphic and has different meaning across vendors

• Standardization international groups are working on this matter

 In order to perform HPC/QC integration, you’ll need to forge your own weapons

 Define a common QC vocabulary

 Define a software stack, compatible with HPC integration

 Performances

 Linpack has defaults, build it is a strong backbone in the HPC community via the Top500

 QC has nothing like Linpac… what should QC benchmarks be? (BACQ)

Teratec – TQCI – 05/09/2024 8

SCHEDULING / ACCOUNTING / AUTHENTICATION

 Scheduler point of view: a QC job is actually a mix of HPC and QC steps

 The HPC bootstraps the simulation

 This HPC steps do “rifles” of QC jobs (such as QAOA)

 The QC steps use the QPU is an exclusive mode (the QPU currently can’t be shared among users)

 QC results are processed by HPC

 The scheduler has to handle both HPC and QC resources (hybrid scheduling)

 Scheduling in not the only required feature

 Running jobs consume QPU time to be accounted, and later billed to the right users

 Billing the right user means that is has been fully authenticated

 In order to run a QC job, the accesses to the QPU have to handle those two aspects

 Most of the available QC programming framework (usually Python libraries) do not handle them

Teratec – TQCI – 05/09/2024 9

BUILDING A QC JOB

 Defining a job means converting a QC source code to a QC executable

 The job is to be compiled from the source before scheduling it

 It is necessary to define a QC executable format, agnostic to any QPU technology

• QIR and QASM/OpenQASM are good candidates

 Compiling to QPU is more complicated than compiling to CPU

Each technology comes with its contraints

• Possible entanglements between qubits

• Available quantum gates

How do you express the constraints related to the technology?

• Width and depth of the circuit: number of available gates and qubits

• Compilation has to implement on-the-fly transpilation

Teratec – TQCI – 05/09/2024 10

HPC/QS IMPLEMENTATION 1/2

In the scope of the HPC/QS project, a Pasqal QPU was acquired

 The QPU is currently under installation at the TGCC facility

 Qaptiva is used as a proxy to the Pasqal system

Users connect to Qaptiva, it handles the authentication and accounting features

Qaptiva schedule the jobs and send them to the QPU via the QLM/interop protocol

QLM/Qaptiva (without the simulation engines) helps building the first bricks of a

middleware, providing a generic and efficient “quantum proxy”

 QC program steps are currently written in Python

 The program is initially encoded using the Pulser framework from Pasqal

 The Pulser code is wrapped in QLM syntax via the Pulser-myQLM binding module

Teratec – TQCI – 05/09/2024 11

HPC/QS IMPLEMENTATION 2/2

Teratec – TQCI – 05/09/2024 12

HPC/QS IMPLEMENTATION : CODE SAMPLE

Convert the Sequence to a Job

job = IsingAQPU.convert_sequence_to_job(seq, nbshots=0, modulation=True)

Simulate the Job using pulser_simulation

aqpu = IsingAQPU.from_sequence(seq, qpu=None)

result = aqpu.submit(job)

print(

"MyQLM Result obtained using IsingAQPU with pulser-simulation with "

"default number of samples (2000):"

)

print(result, "\n")

print(

"Expressed as a dictionary of (state: probability): ",

{sample.state: sample.probability for sample in result},

"\n",

)

print("Converted into a Pulser Result:")

print(IsingAQPU.convert_result_to_samples(result), "\n")

Simulate the Job using AnalogQPU

try:

from qlmaas.qpus import AnalogQPU

analog_qpu = AnalogQPU()

aqpu = IsingAQPU.from_sequence(seq, qpu=analog_qpu)

results = aqpu.submit(job)

Display the results once they have run on AnalogQPU

print("Results obtained with AnalogQPU: ", results.join())

print(

"Expressed as a dictionary of (state: probability): ",

{sample.state: sample.probability for sample in results},

"\n",

)

except ImportError:

print("Can't import AnalogQPU, check connection to Qaptiva Access.")

import numpy as np

from pulser import Pulse, Register, Sequence

from pulser.devices import AnalogDevice

from pulser.waveforms import CustomWaveform

from pulser_simulation import QutipEmulator

from pulser_myqlm import IsingAQPU

Pulser Sequence (find more at https://pulser.readthedocs.io/)

device = AnalogDevice

register = Register.square(2, 5, None)

seq = Sequence(register, device)

seq.declare_channel("ryd_glob", "rydberg_global")

duration = 100

seq.add(

Pulse(

CustomWaveform([ti / duration for ti in range(duration)]),

CustomWaveform([1 - ti / duration for ti in range(duration)]),

0,

),

"ryd_glob",

)

seq.add(Pulse.ConstantPulse(20, 1, 0, 0), "ryd_glob")

seq.add(Pulse.ConstantPulse(20, 1, 0, np.pi / 2), "ryd_glob")

Draw the Sequence

seq.draw(draw_phase_curve=True)

Simulate the Sequence using Pulser

sim = QutipEmulator.from_sequence(seq, with_modulation=True)

res = sim.run().sample_final_state(2000)

print("Pulser Result obtained with pulser_simulation for 2000 samples:")

print(res, "\n")

print("Converted into MyQLM Result:")

print(IsingAQPU.convert_samples_to_result(res), "\n")

print(

"Expressed as a dictionary of (state: probability): ",

{

sample.state: sample.probability

for sample in IsingAQPU.convert_samples_to_result(res)

},

"\n",

)

Teratec – TQCI – 05/09/2024 13

FUTURE CHALLENGES

 Implement more sophisticated scheduling models

 The current model is very close to a network spooler

• Dedicated studies, coupling HPC and QC steps are to be done

• Using HPC scheduler (such as Slurm) is a promising path

 What about “embarrassingly quantum” job?

• Can I run several jobs at the same time, splitting the qubits in several packs?

• What are the impact (noise, unwanted entanglements) of one job to the others?

 Future QPU may be able to be shared across multiple users: how should this be handled?

 Current programs are written in Python

 C++ codes with explicit quantum subroutines are the next steps

 This emphasizes the need of standardized QC compilers and QC executable formats

Teratec – TQCI – 05/09/2024 14

TOWARDS OPENSOURCE STANDARDS

 Full stack approach in HPC has proven its weaknesses

 Generic and standardized OS and libraries, as Linux provides, was a major improvement in HPC history

 Open-sources middleware should be defined

 Standardized API and libraries to address well known NPC problem

• Will help in using QUBO or MIS as building blocks to create complex HPC/QC program

• Tools to help turning NPC problems to NP problems using HPC

 Standardized system framework to wrap a QPU from the system point of view

• Will help in providing proxy to implement authentication / accouting / scheduler on top of QPU

 Compilers are to be standardized

 Agreeing on an established QC executable format

 Building a “quantum gcc” capable of handling any kind of QPU with their own constraints

 Defining what a hybrid C++ HPC/QC syntax should be

15

THANK YOU

philippe.deniel@cea.fr

HQI France

@HQI_France

Teratec – TQCI | September 5th, 2024

mailto:philippe.deniel@cea.fr

Teratec – TQCI – 05/09/2024 16

BACKUP SLIDES

Teratec – TQCI – 05/09/2024 17

1. A

QPUS INSIDE THE COMPUTE CENTER

 QC is currently focusing on “deep tech” aspects

 How physics can be used to compute

 Potential advantages of some technologies against other

 QC is not a standalone technology

 It can be optimized/helped by HPC as well as it optimizes/helps HPC (e.g. QAOA)

 QC is very good at some tasks (DFT as QFT) and quite bad at others (addition)

 You do NOT run an Operating System on a QPU and you NEVER will

 QC is fundamentally to be used with HPC

 QPUs are accelerators, like GPUs

 QC is an ancillary compute technology

