QUANDELA

Scaling Quantum Computing Challenges, and Practical Solutions for the Photonic Approach

JUANDEI

Jean Senellart & Nicolas Maring 05/09/2024

Photonic Quantum Computing leader in EU with a large team of experts in quantum photonic technologies

100 people dedicated to photonic quantum computing >60 PhDs and engineers in algorithms, semiconductors, photonics

R&D Centers

Production Centers

Offices based in *Paris Munich Seoul Montreal*

La FRENCH

MosaiQ A roadmap to Fault-Tolerant QC through the stars

Q MosaiQ Industrialization Roadmap 2022 - First generation – Lab prototype

Q MosaiQ Industrialization Roadmap 2023 - Second generation – Data center compatibility

Q MosaiQ Industrialization Roadmap 2024 - Third generation - Modularity

Q MosaiQ The associated software stack

Simulation	Local Simulation 12 photons	SLOS 18 photons	GPU 24 photons	HPC 30 photons
Quantum Framework	Perceval	Qiskit-Connector	Exqalibur	
Cloud Service	Cloud 1.0	Online N	lotebooks (Quantum Toolbox
Compilation Transpilation	ML Transpilation		Error mitigaton	
Operating System	3rd-Party Drivers	MosaiqOS	Self-Calibration	Quandela Data Link

Q MosaiQ Ascella - 6 qubits Gate Based – Photon based computations

Hybrid variational quantum eigensolver

Quantum neural network

6 single-photon Boson Sampling

10

00:00:00

Q Photonic Quantum Computers: the general scheme

Quandela: Solid-state emitters = <u>on-demand</u> process

Integrated photonics, fibers and detectors

Q Enabling technologies For photonic quantum computing

III-V semiconductors

Lasers

Efficient Fiber optics components

Fiber interconnects

Photonic Integrated Circuits

Electronics

High efficiency Detectors

low consumption cryogenics

Optical filters

Q Fourth generation - Towards Fault-tolerant SPOQC Blue print for fault-tolerant quantum computing architecture

A Spin-Optical Quantum Computing Architecture

Grégoire de Gliniasty^{1,2}, Paul Hilaire¹, Pierre-Emmanuel Emeriau¹, Stephen C. Wein¹, Alexia Salavrakos¹, and Shane Mansfield¹

Quantum Dot Spin-control

Linear optics

Q Towards fault tolerant Spin-Optical Resource state generation for MBQC

N. Coste, ...,N. Somaschi, P. Senellart, "High-rate entanglement between a semiconductor spin and indistinguishable photons", Nature Photonics (2022)

Q Towards fault tolerant Adaptive Measurement – Feedforward

- large resource state generation
- high speed reconfigurability
- ultra low latency electronics
- PNR detection

Q Towards fault tolerant Photon loss & Performance targets

Fiber interconnects

Q SPOQC Error Correction Thresholds For a basic surface code

Q MosaiQ A roadmap to Fault-Tolerant QC through the stars

UTILITY

TOWARD FTQC

19

Questions?

TE