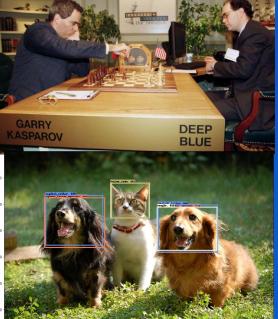
TERATEC / TQCI – IBM Seminar

Industrialization and deployment of quantum computing technologies:

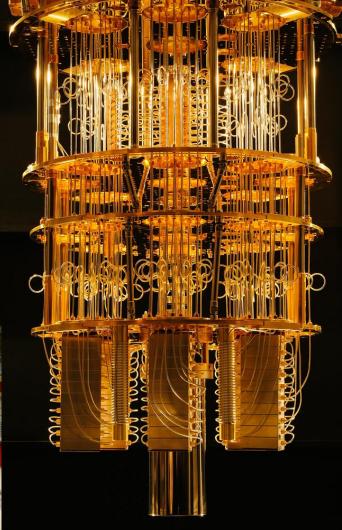
Typical Hurdles identified to scale



Planning

Delivering Machine Learning & Delivering Quantum Algorithms

• Some thoughts on the scaling, apart from hardware


Delivering Machine Learning

Q,

Delivering Quantum
Algorithms

< 2018 : Delivering Machine Learning despite some bottlenecks

An example of bad google trad translation which was common at that time

Machine Learning before 2018

Was not in use anywhere except in tech companies	×
Was struggling to theoretically demonstrate its convergence	×
Was coming with a lot of promise and buzz	\checkmark
Was not considered as a science	×
Was accused of being black boxes	×
Needed a lot of recipes to work	×

< 2018 : Delivering Machine Learning VS Error

Was not in use anywhere except in tech

X

companies Was struggling to theoretically demonstrate its convergence

Was coming with a lot of promise and buzz

X

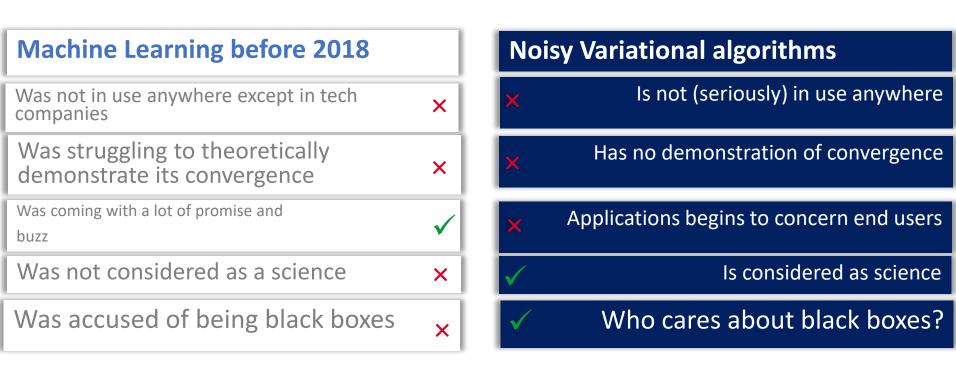
X

X

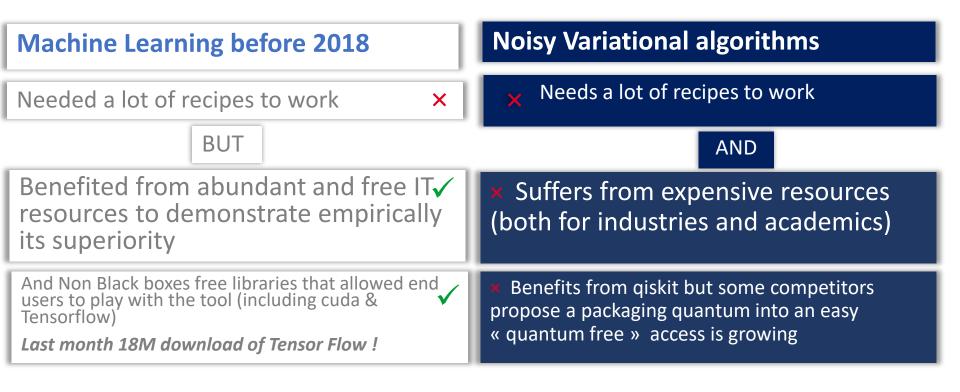
X

Was not considered as a science

Was accused of being black boxes

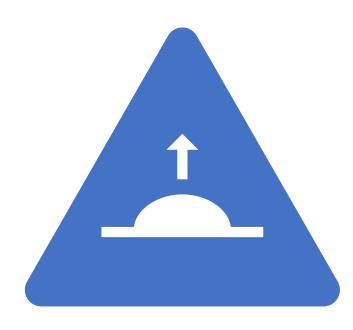

Who cares about black boxes?

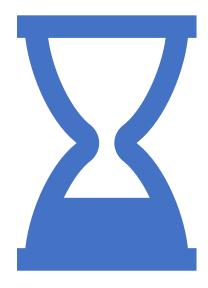
Needed a lot of recipes to work



Should always work

<2018 : Delivering Machine Learning VS Noisy Variational today ...


<2018 : ... Delivering Machine Learning VS Noisy Variational today



Question

Will we demonstrate anything on Noisy machines without a free and abundant access to machines?

Some thoughts on the road to scaling

The Wait (for machines) and See temptation

Wait until machines to arrive might be a problem:

A lot of algorithms hurdles to overcome

On NISQ : convergence, interest when compared to their classical counterparts

On FTQC: Oracle encoding, search space for some algorithms,

••

Beside algorithms, the question of encoding the case of interest is a major issue

→ The Roadmap on hardware might be completed with a roadmap on software and integration (at least internally)

Poc-king limitations The journey from 2019 to now.

Until now, we were PoC-king a lot on toy model

Great to train a team

But Doesn't allow to have a set of decisive conclusions

For NISQ the scientific method may cost M€ of hardware to have a beginning of conclusion

The next generation of use case have to be at an industrial level

The Quantum Advantage only trap

- The brute force comparison between classical and quantum might be a bad bet
- New usages of Quantum have to arise, even on historical topics.
- It requires a deep expertise both at the client level and at the Quantum level

Our needs of an iQuantum

- As we also need to imagine new usages,
- Industries still need to understand the tool to create new internal usages
- → The Quantum part of Quantum Computing needs to be explained not hidden behing a too simplictic interface

Take away

- Non corrected and non theoretically demonstrated algorithms needs a cheap and massive access to hardware to demonstrate their benefits
- Industries need to invent new usages and to that end, we need to be fluent in quantum and in our business
- The integration question is a big one

