

Quantum/HPC Hybridization with Qaptiva – Recent Achievements and Perspectives

Cyril ALLOUCHE VP, Quantum R&D

an atos business

EVIDEN

Integrating QPUs in the HPC center

The need for (large scale) emulation

Perspectives : large scale heterogeneous computing

1 Integrating QPUs in the HPC center

Challenges to integrate (early) QPUs into a HPC datacenter

- 1. Availability
- 2. Resource Management
- 3. Multi-User

Our solution: hybridization node – Qaptiva Access

Integrating Quantum Technologies in the HPC - Qaptiva[™] Access

HPC & Quantum hybridization

Integration of any quantum processing unit (QPU) into the HPC infrastructure

- Qaptiva Access : HPC/QC hybridization node
- myQLM library provides quantum programming capabilities to the cluster
- Enables scheduling of QPUs with SLURM
- Enables quantum emulators on HPC

Used in major HPC-QC integrations:

- TGCC, HQI platform, French national supercomputing infrastructure
- Julich Supercomputing Center, HPCQS
 and Qsolid projects

Qaptiva Empowering HQI at TGCC

2 The Need for (Large Scale) Emulation

Today's QPUs are still Noisy and Slow

Benchmark Results - Quantum Fourier Transform (1) - Qiskit Device=ibm_brisbane-240212-res-0 Feb 13, 2024 23:23:43 UTC

EVIDEN

Emulation on the HPC with Qaptiva

- MPI distributed emulators, highly optimized for scaling
 - reaching 43 qubits with 1024 nodes
- Launched either as HPC jobs (sbatch) or from python interface with myQLM

EVIDEN

3 Perspectives : Large Scale Heterogeneous Computing

NISQ Programming Paradigm Won't Scale

• NISQ model :

Control flow managed by CPU Quantum circuits created by CPU Repeated evaluation of circuit by QPU

\Rightarrow QPU online slave of CPU, interpreted programming

- This cannot scale to multi CPU * multi QPU
- This cannot scale to FTQC
- Interpreted programming is not compatible with existing HPC applications
- Need for a heterogeneous HPC Quantum paradigm

Q-Pragma – A C++ Framework for Large Scale Quantum Computing

<u>Q-Pragma C++ framework:</u>

Extending C++ with Quantum Computing only with pragmas directives

Enables hybridization in existing C++ codes without rewriting

Compatible with standard heterogeneous computing techniques

https://arxiv.org/abs/2309.02605

Shor algorithm in 10 lines

```
uint64_t to_divide = ..., random_base = ..., measurement
= OUL;
```

#pragma quantum scope with (to_divide, random_base, measurement)

```
{
```

© Eviden SAS

```
qint_t<QSIZE> first_register;
wall::H<QSIZE>(first_register);
```

```
qint_t<QSIZE> second_register =
```

qpragma::pow(random_base, first_register) %
to_divide;

```
reset(second_register);
```

```
qft<QSIZE>(first_register);
measurement = measure_and_reset(first_register);
```

EVIDEN

Questions

Thanks!

For more information, please contact: Cyril ALLOUCHE

Confidential information owned by Eviden SAS, to be used by the recipient only. This document, or any part of it, may not be reproduced, copied, circulated and/or distributed nor quoted without prior written approval from Eviden SAS.

© Eviden SAS