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FAULT TOLERANCE

Achieving reliable quantum computing

Recently, Microsoft & Quantinuum:

arXiv:2404.02280: “Demonstration of logical
qubits and repeated error correction with
better-than-physical error rates”, April 2024

On Quantinuum’s H2 machine, entangled
logical qubits exhibit a circuit error rate of 10~
versus a physical circuit error rate of 8x10-3.

For the first time, successfully demonstrated
multiple rounds of active syndrome
extractions, a critical component of reliable
quantum computing

Required ~350 physical two-qubit operations
and over 75 physical timesteps
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RESILIENT QUANTUM COMPUTING

Quantum Computing Implementation Levels

3

Level 1 | Foundational Level 2 | Resilient
Physical qubits Logical qubits

Quantum advantage: Scientific advantage:

~60 physical qubits, contrived problems 100 logical qubits, 1078 error rate
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Level 3 | Scale

Quantum supercomputer

Commercial advantage:

1000 logical qubits, 10712 error rate



Reliable Quantum Operations Per Second (rQOPS)

R =0 X[, at g error rate

Q: number of reliable logical qubits
f:logical clock speed (in hertz)

e;. logical error rate
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Azure Quantum Resource Estimator

application examples qubit parameter examples
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| QIR program planar quantum planar quantum ISA physical qubit
| ISA executable OUTPUT instruction set instruction set
resource estimates -
;I'arget rQOP% i ot fmo ofa) Estulmated rQC?,PS
What we want What we get
Based on: Based on:
« Size of logical circuit we * Hardware and systems
want to execute architecture parameters
« Target error of outcome  QEC scheme + distance used

* Target run-time
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* Ising model

) . « Hubbard model
Four Sample Applications

- Heisenberg model

« Quantum chemistry
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» Logical resource estimates for N x N Ising model N . : ,
J J Resource estimation for simulating a 2D Ising Model

Hamiltonian
1 O X 1 O 2 O x 2 O 3 O X 3 O In this Python+Q# notebook we demonstrate how to estimate the resources for quantum dynamics, specifically the simulation

of an Ising model Hamiltonian on an IV % N 2D lattice using a fourth-arder Trotter Suzuki product formula assuming a 2D qubit

architecture with nearest-neighbor connectivity.

First, we load the necessary Python packages.

import gsharp
import pandas as pd

Background: 2D Ising model

The Ising model is a mathematical model of ferromagnetism in a lattice (in our case a 2D square lattice) with two kinds of terms
in the Hamiltonian: (i} an interaction term between adjacent sites and (i1} an external magnetic field acting at each site. For our

purposes, we consider a simplified version of the model where the interaction terms have the same strength and the external

field strength is the same at each site. Formally, the Ising model Hamiltonian on an N x N lattice we consider is formulated as:

H=-J) 77;+9) X,
. 1

—
B A

where J is the interaction strength, g is external field strength.

g c ; ; iHt Hamian i o ; _ - ;
° Ta rg et ru N _tl me. 2 d ays The time evolution e for the Hamiltonian is simulated with the fourth-order product formula so that any errors in simulation

are sufficiently small. Essentially, this is done by simulating the evolution for small slices of time A and repeating this for
nSteps = t/A to obtain the full time evolution. The Trotter-Suzuki formula for higher orders can be recursively defined using
a fractal decomposition as discussed in Section 3 of Hatanao and Suziki's survey. Then the fourth order formula U.;{ﬂ} can be
constructed using the second-order one Ua(A) as follows.

© Microsoft 2024
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» Logical resource estimates for N X N Heisenberg

e Resource _Estimation for simulating a 2D Heisenberg Model
20 x 20 30 x 30 40 x 40 Hamiltonian

In this Python + OQ# notebook we demonstrate how to efficienty estimate the resources for simulating a Heisenberg model
Hamiltonian on an W x IV 2D lattice using a fourth-order Trotter Suzuki product formula assuming a 2D planar qubit

architecture with nearest-neighbor connectivity.

First, we load the necessary packages.

import gsharp
import pandas as pd

Background: 2D Heisenberg Model

The quantum Heisenberg model is a statistical mechanical model used in the study of magnetic systems. The family of

Heisenberg model Hamiltonians considered in this notebook consist of three types of interaction terms between adjacent
lattice sites: {X ® X, Y ® Y, Z ® Z}. For our purposes we consider that the interaction strength J is the same for each

term. Formally, the Heisenberg model Hamiltonian on an IV x N lattices divided into sets of commuting terms is formulated

a5,

H= JZXiug@Xj +JZ:L® Z; +JZ};@1;.
1. 1.5 1.

L vl L vl (N -

A B o

« Target run-time: 1 week

TThe time evolution e *H% for the Hamiltonian is simulated with the fourth-order Trotter-Suzuki product formula so that any
errors in simulation are sufficiently small. Essentially, this is done by simulating the evolution for small slices of time A and
repeating this for nSteps = [t/A] to obtain the full time evolution. The Trotter-Suzuki formula for higher orders can be
recursively defined using a fractal decomposition as discussed in Section 3 of Hatanao and Suziki's survey. Then the fourth

© Microsoft 2024

order formula Uy(A) can be constructed using the second-order one Us(A) as follows.
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 Logical resource estimates for N X N Hubbard model
Resource estimation for simulating a 2D Hubbard model

2 O X 2 O 3 O x 3 O 4_0 X 4_0 In this Python + O# notebook we demonstrate how to efficiently estimate the resources required to simulate a Hubbard model

Hamiltonian on an N x N 2D lattice using a fourth-order Tratter Suzuki product formula assuming a 2D planar qubit architecture

with nearest-neighbor connectivity.

First, load the necessary packages.

import gsharp
import pandas as pd

Background: 2D Hubbard Model

The Hubbard Model is a simple model of interacting particles in a lattice (in our case a 2D square lattice) with two kinds of terms

in the Hamiltonian: (i) a hopping term between adjacent sites and (ii) a potential term for onsite interactions. Formally, 2 Hubbard
model Hamiltonian on an IV < N lattice where each site has two spins {up. dn} is given as:

— t t _ f t _ i t
H= UZ €3 3)up ClE3)mpC i §) dn© (i) dn t Z [C[i,ﬂ,a'c{i ) T iy l,j}:aC{iJ}-a’} t Z {C{ij},ac{idl 1,0 T Cligi1)e
i o {up,dn},ij i {updn}i,j

L l

B A c

L

where ¢ is the annihilation operator, et is the creation operator, the first set of terms are the on-site repulsion terms, the second

set are the vertical row hops and last set is the horizontal column hops.

« Target run-time: 1 week

Converting to Pauli terms

The first step needed to simulate H is to map the fermionic terms into local Pauli operations involving only a few qubits. When
the Hamiltoinan acts on a 1D lattice, using the Jordan-Wigner would suffice. However, for the 2D lattice, either row or column

© Microsoft 2024 hops will end up being non-local terms involving O(N') qubits. To overcome this, we use the Verstraste-Cirac enceding to

convert the repulsion and hopping terms into lecal Pauli operators involving at most 4 qubits at a time. This is done by adding


https://aka.ms/AQRE/2DHubbard

SAMPLE 4/4

Quantum Chemistry

« https://aka.ms/AQRE/DoubleFactorizedChemistry

 Logical resource estimates for various molecules:

N, Polyyne Fe,S, XVill-cas4-fb Nitrogenase

qubits 721 1394 2109 2740 2956
depth 5.7 x 108 1.6 x 1019 1.2 x 1011 2.7 x 1011 8.6 x 1012

error 8.6x10715 | 1.6x1071 | 14x107Y7 | 46x1078 | 13x 1071

target rQOPS| 3.2 x 10° 1.7 x 107 2.0 x 108 6.0 x 108 2.1 x 1010

« Target run-time: 28 days

© Microsoft 2024
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Logical error rate vs Logical Qubits

Nitrogenase

Logical Qubits vs ilcase
Logical Errors

Hubbard 40x40

Polyyne

Hubbard 30x30

Heisenberg 40x40

Hubbard 20x20
Ratio depends on algorithm
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Ising 30x30

Ising 20x20

Ising 10x10

LI
10°
Logical Qubits
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rQOPS vs Logical Qubits vs

Logical error rate vs rQOP5
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Nitrogenase
xVlll-cas4-fb

Fe;S:

Hubbard 40x40
Polyyne

Hubbard 30x30
Heisenberg 40x40

Hubbard 20x20

Heisenberg 30x30
Heisenberg 20x 20
N3
Ising 30x30

Ising 20x20

Ising 10x10

Logical Error Rates

Larger systems:
Logical clock-speed
matters most

Small systems:
Number of logical
qubits matters most
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Logical Qubits vs rQOPS
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103 10° 107 10°
reliable Quantum Operations Per Second

Hubbard 40x40
Hubbard 30x30
Heisenberg 40 x40
Hubbard 20x20
Nitrogenase
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Ising 30x30
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Target Profiles for kilo, Mega, and Giga rQOPS

Logical error rate vs rQOP5
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Nitrogenase
xVlll-cas4-fb

Fe;5;

Hubbard 40x40

Polyyne

v Hubbard 30x30

Heisenberg 40 x40

Hubbard 20x20

Heisenberg 30x30

Heisenberg 20x 20

N3

Ising 30x30

Ising 20x20

Ising 10x10

Giga rQOPS

3000 logical qubits
logical error < 10718
clock 3.3 x 10> Hz

Mega rQOPS

1000 logical qubits
logical error < 10714
clock-speed 103 Hz

kilo rQOPS

400 logical qubits
logical error < 10719
clock-speed 2.5 Hz
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Logical Qubits vs rQOPS

103 10° 107 107
reliable Quantum Operations Per Second

( . Hubbard 40x40

(% Hubbard 30x30

Heisenberg 40 x40

Hubbard 20x20

Nitrogenase

*Vl-cas4-fb

Fea5;

Heisenberg 30x30

Ising 30x30

Polyyne

Heisenberg 20x 20

Ising 20x20

N2z

Ising 10x10




Estimating Logical Clock-Speed

flo = f physical
logical = 6EC—overhead

Logical clock-speed depends on

- physical clock-speed

- overhead induced by error correction
- and in turn target logical error rates
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A[‘Chitectu e Profiles Target Requirements vs Architecture Profiles

ﬂ -

vs Target Profiles A3 gate-is-1

gate-ps-
kilo rQOPS: gate-ns

Physical clock-speed not an issue
gate-ns-10~°

meas-ns-10—%

Mega rQOPS:

QEC slowdown starts to make a difference _
meas-ns-107°
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Giga rQOPS:
Physical clock-speed + fast QEC crucial

100 101 102 107 10° 10°
Target Logical Clock-Speed
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5 Microsoft

Thank you

Try it out: aka.ms/AQ/RE

D

Read about AQRE: arXiv:2311.058017
Learn background.: arXiv:2211.07629
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