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A major promise of QCs

•Combinatorial optimizations ubiquitous in sciences & technology; 
•Fault tolerant QCs: quadratic speed-ups; 
•However, low clock speeds; 
•Practical advantage before large-scale FT devices unclear; 
•Challenge: number of qubits required to compete with classical solvers;

Can we do something with the NISQ devices available today?  



Variational quantum algorithms

• Parametrized quantum circuit on a NISQ computer 
• Optimize parameters via feedback loop between classical optimizer and quantum circuit

K. Bharti et al., Noisy intermediate-scale quantum algorithms (2022) 
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Figure 2 Diagrammatic representation of a Variational Quantum Algorithm (VQA). A VQA workflow can be divided into four
main components: a) the objective function O that encodes the problem to be solved; b) the parameterized quantum circuit
(PQC) U , which variables ✓ are tuned to minimize the objective; c) the measurement scheme, which performs the basis changes
and measurements needed to compute expectation values that are used to evaluate the objective; and d) the classical optimizer
that minimizes the objective. The PQC can be defined heuristically, following hardware-inspired ansätze, or designed from the
knowledge about the problem Hamiltonian H. Inputs of a VQA are the circuit ansatz U(✓) and the initial parameter values
✓0. Outputs include optimized parameter values ✓∗and the minimum of the objective.

in the sense of Eq. (1) then naturally decomposes into a
set of expectation values, each defined by a single Pauli
string

�H�U =
M

�
k=1

ck�P̂k�U . (4)

Examples of Hamiltonian objectives include molecules
(by means of some fermionic transformation to Pauli
strings, as detailed in Sec. VI.A), condensed matter mod-
els written in terms of spin chains, or optimization prob-
lems encoded into a Hamiltonian form (see Sec. VI.C).

2. Fidelity

Instead of optimizing in respect to the expectation
value of an operator, several VQAs require a subrou-
tine to optimize the state obtained from the PQC U (✓),
� �

U(✓) in respect to a specific target state � �. A com-
monly used cost function is the fidelity between the PQC
and the target state

F � , U(✓)� ≡ �� � U(✓)��2, (5)

which is equivalent to the expectation value over the pro-
jector ⇧̂ = � � � �. The state preparation objective is

then the minimization of the infidelity 1 − F � , U(✓)�
or just the negative fidelity

max
✓

F � , U(✓)� =min
✓
�−�⇧̂ �U(✓)� . (6)

If we know the efficient circuit U that prepares the tar-
get state � �, we can compute the fidelity with the in-
version test by preparing the quantum state U †

 � U(✓)�
and measuring the projector into the zero state ⇧̂0 =
�0�⊗n�0�⊗n with the fidelity given by F � , U(✓)� =
�⇧̂0�U†

 U(✓)
(Havlíček et al., 2019). If one wants to

avoid optimizing in respect to a projector onto a sin-
gle state, one can instead use a local observable that
also becomes maximal for the target state, namely Ô =
1
N
∑N

k=1 �0k� �0k � ⊗ I
k̄
, where I

k̄
is the identity matrix for

all qubits except k and �0k� is the zero state for qubit
k (Barison et al., 2021; Cerezo et al., 2021). Alterna-
tively, one can use randomized measurements to measure
the fidelity Tr(⇢1⇢2) of two density matrices ⇢1, ⇢2 (El-
ben et al., 2020, 2019; van Enk and Beenakker, 2012).
First, one selects m unitaries {Vk}k, which are chosen as
tensor product of Haar random unitaries over the local
d-dimensional subspace. These unitaries are applied on
each quantum state ⇢i = Vk⇢V

†
k

and ⇢i is sampled in the
computational basis. Then, one estimates the probabil-

Examples:  
• VQE: quantum chemistry  

• QAOA: combinatorial 
optimizations

Peruzzo et al. (2013)

Farhi, Goldstone, & Gutmann (2014)



Challenges of variational quantum algorithms

• Deep quantum circuits needed for smooth optimization landscapes. 

• Barren plateaus: gradient variances decay exponentially with # qubits. 

• Noise: state becomes useless at depths ~ O(1 / noise strength).

E. Anschuetz, Critical Points in Quantum Generative Models (2021); 
M. Larroca et al., Theory of over-parametrization in quantum neural networks (2021).

J. R. McClean et al, Barren plateaus in quantum neural network training landscapes (2018);
S. Wang et al., Noise-induced barren plateaus in variational quantum algorithms (2021).

D. Stilck-França & R. García-Patron, Limitations of optimization algorithms on noisy quantum 
devices (2021); G. De Palma (2022); Y. Kweck et al (2023).
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erties of QML loss function landscapes. Indeed, there are
results analyzing the presence of sub-optimal local min-
ima [31, 32], the existence of barren plateaus [33–44], and
how quantum noise affects the loss landscape [45–49].

Similar to classical NNs, some examples of QNNs that
exhibit overparametrization have been constructed [32, 50–
55]. Some of these works have heuristically shown that
increasing the number of parameters in the QNN can im-
prove its trainability and lead to faster convergence. How-
ever, there is still need for a detailed theoretical analy-
sis of this overparametrization phenomenon. Understand-
ing overparametrization is crucial for Quantum Landscape
Theory and for engineering QNNs to enhance their train-
ability.

In this work we provide a theoretical framework for the
overparametrization of QNNs. Our main results indicate
that, for a general type of periodic-structured QNNs, one
can reach an overparametrized regime by increasing the
number of parameters past some threshold critical value
Mc (see Fig. 1(a)). Moreover, we prove that Mc is related
to the dimension of the Dynamical Lie Algebra (DLA) [56,
57] associated with the generators of the QNN.

We here define overparametrization as the QNN having
enough parameters so that the quantum Fisher information
matrix saturates its achievable rank. In this case, one can
explore all relevant directions in the state space by varying
the QNN parameters. We then relate this notion of over-
parametrization to different measures of the model’s ca-
pacity [24, 58], so that a model is overparametrized when
its capacity is saturated. Then, as shown in Fig. 1(b),
our results have direct implications in understanding why
overparametrization can improve the model’s trainability,
as the overparametrization onset corresponds to a compu-
tational phase transition [52]. We verify our theoretical re-
sults by performing numerical simulations. In all cases, we
find the predicted computational phase transition, where
the success probability of solving the optimization problem
is greatly increased after a critical number of parameters.

These results provide theoretical grounds for recent
observations of the overparametrization phenomenon in
QML [50, 52, 59]. Moreover, our theorems have direct con-
sequences for the field of quantum optimal control [60–63].

II. RESULTS

A. Quantum Neural Networks

Quantum Neural Networks (QNNs) [18–20] employ
parametrized quantum circuits to allow for task-oriented
programming of quantum computers. Here, one encodes
the problem of interest in a loss function L(✓), whose min-

  

Figure 1. Overparametrization in quantum neural net-
works (QNNs). a) Quantum circuit description of the QNN.
By having a low (high) number of parameters one is not able
(is able) to explore all relevant directions in the Hilbert space,
and thus the QNN is underparametrized (overparametrized).
b) The gray surface corresponds to the unconstrained loss func-
tion landscape. An underparametrized QNN explores a low
dimensional cut of the loss function (1D cut over the red lines).
Here, the optimizer can get trapped in spurious local minima
(blue segment) that negatively impact the parameter optimiza-
tion. By increasing the number of parameters past some thresh-
old Mc, one can explore a higher dimensional cut of the land-
scape (2D cut over the green region). As shown, some previous
spurious local minima correspond to saddle points (blue seg-
ment), and the optimizer can escape the false trap.

ima correspond to the task’s solution. Using data from a
training dataset S composed of quantum states | µi 2 S,
one optimizes the QNN parameters to solve the problem

✓⇤ = argmin
✓

L(✓). (1)

Measurements on a quantum computer assist in estimat-
ing the loss function (or its gradients), while a classi-
cal optimizer is used to update the parameters and solve
Eq. (1). This hybrid scheme allows the QML model to
access the exponentially large dimension of the Hilbert
space, with the hope that if the whole process is hard to
classically simulate, then a quantum advantage could be
achieved [22, 64, 65].

We consider the case when the QNN is a parametrized

Near-term q optimization solvers restricted to small quantum circuits



Can we still do something useful/interesting?



Outline of the talk 

• Quantum QUBO solvers with polynomial qubit-number compressions 

• Circuit complexity and performance (numerics) 

• Barren plateaus mitigation as a built-in feature 

• Experimental results from IonQ and Quantinuum deployments

M. Sciorilli, L. Borges, T. Patti, Diego García-Martín,  G. Camillo, A. Anandkumar, and LA, 
Towards large-scale quantum optimization solvers with few qubits, arXiv:2401.09421. 



Eigenstate of Pauli matrix 

Native quantum encoding:
<latexit sha1_base64="HWCGKY9b9a7QNigLgguF+nPpwKk=">AAAB9HicbVDJSgNBEO2JW4xbVPDipTEInsKM4HIM8eIxAbNAMoSeTk/SpKd77K6JhpDv8OJBEY/6FX6BNy9+i53loIkPCh7vVVFVL4gFN+C6X05qaXlldS29ntnY3Nreye7uVY1KNGUVqoTS9YAYJrhkFeAgWD3WjESBYLWgdzX2a32mDVfyBgYx8yPSkTzklICV/PsWbwoWAtFa3bWyOTfvToAXiTcjucJB+Zu/FT9Krexns61oEjEJVBBjGp4bgz8kGjgVbJRpJobFhPZIhzUslSRixh9Ojh7hY6u0cai0LQl4ov6eGJLImEEU2M6IQNfMe2PxP6+RQHjpD7mME2CSTheFicCg8DgB3OaaURADSwjV3N6KaZdoQsHmlLEhePMvL5Lqad47z5+VbRpFNEUaHaIjdII8dIEK6BqVUAVRdIse0BN6dvrOo/PivE5bU85sZh/9gfP+Ay7WlhU=</latexit>xi  

MaxCut and weighted MaxCut

Find the bipartition cutting the maximum 
number of (weighted) edges

<latexit sha1_base64="5ywWPQ9ucL/dmeEJh0N25BpH47E=">AAAB8HicbVDJSgNBEK2JW4xb1KOXJkGIKGFGcEEQgiJ6jGAWSYbQ0+kkTXp6hu4eYRjyFXrwoIhXP8db/sbOctDEBwWP96qoqueFnClt20MrtbC4tLySXs2srW9sbmW3d6oqiCShFRLwQNY9rChnglY005zWQ0mx73Fa8/rXI7/2RKVigXjQcUhdH3cF6zCCtZEeby8uCzdHqHrQyubtoj0GmifOlORLuebhy7AUl1vZ72Y7IJFPhSYcK9Vw7FC7CZaaEU4HmWakaIhJH3dpw1CBfarcZHzwAO0bpY06gTQlNBqrvycS7CsV+57p9LHuqVlvJP7nNSLdOXcTJsJIU0EmizoRRzpAo+9Rm0lKNI8NwUQycysiPSwx0SajjAnBmX15nlSPi85p8eTepHEFE6RhD3JQAAfOoAR3UIYKEPDhGd7g3ZLWq/VhfU5aU9Z0Zhf+wPr6AXbgkd8=</latexit>

G := (E, V )
Ising model formulation: find the 

ground state of 

<latexit sha1_base64="523ho22Ju/obfl+JlQYaBMs+hnI=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMKu4KMMsbFM0DwwWcLsZDYZMjO7zMwKYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7S8srqWXc9tbG5t7+R39+o6ShShNRLxSDUDrClnktYMM5w2Y0WxCDhtBIOrsd+4p0qzSN6aYUx9gXuShYxgY6Wbuw7r5Atu0Z0ALRJvRgqlg+o3ey9/VDr5z3Y3Iomg0hCOtW55bmz8FCvDCKejXDvRNMZkgHu0ZanEgmo/nZw6QsdW6aIwUrakQRP190SKhdZDEdhOgU1fz3tj8T+vlZjw0k+ZjBNDJZkuChOOTITGf6MuU5QYPrQEE8XsrYj0scLE2HRyNgRv/uVFUj8teufFs6pNowxTZOEQjuAEPLiAElxDBWpAoAcP8ATPDncenRfnddqacWYz+/AHztsPFMSRYQ==</latexit>

Zi

• Paradigmatic NP-hard problem 
• APX-hard too: no Poly(time) approx. algorithm for arbitrary approx. ratio    
• Best efficient classical solver with performance guarantees: Goemmans-Williamson (SDP),                  
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the expressivity of the model, since L-depth circuits con-
tain O(L⇥ log(m)) parameters. This affects the quality
of the solutions. In contrast, our method operates man-
ifestly in the regime of classically intractable quantum
circuits (see Sec. Possible classical analogues of our algo-
rithm in the SI). Second, as for experimental feasibility,
the previous schemes require the measurement of proba-
bilities that are (at best) of order m�1. In contrast, our
solver requires expectation values of order m�bk/2c/k (see
Choice of ↵ in the SI). For k = 2 and k = 3, e.g., this
is respectively quadratically and cubically better than
m�1. Third, while in [27–30] the problems are relaxed
to quadratic programs [27], Eq. (2) defines a highly non-
linear optimization. These combined features lead to so-
lutions notably superior to those of the previous schemes,
as we show below.

Circuit complexities and approximation ratios

Here, we investigate the quantum resources (circuit
depth, two-qubit gate count, and number of variational
parameters) required by our scheme. Due to the strong
reduction in qubit number, an increase in required cir-
cuit depth is expected to maintain the same expressivity.
We benchmark on graph instances whose exact solution
Vmax := maxx V(x) is unknown in general. Therefore,
we denote by rexact := V(x⇤)/Vmax the exact approxi-
mation ratio and by r := V(x⇤)/Vbest the estimated ap-
proximation ratio based on the best known solution Vbest
available (see Numerical details).

In Fig. 2 (left panel), we plot the gate complexity re-
quired to reach r = 16/17 ⇡ 0.941 without doing the
final local search step (to capture the resource scaling ex-
clusively due to the quantum subroutine) on non-trivial
random MaxCut instances of increasing sizes, for the en-
codings ⇧(2) and ⇧(3). For rexact, this value gives the
threshold for worst-case computational hardness. By
non-trivial random instances we mean random instances
post-selected to discard easy ones (see Numerical details).
The results suggest that the number of gates scales ap-
proximately linearly with m. The same holds also for
the number of variational parameters, which is propor-
tional to the number of gates. In turn, the number of
circuit layers scales as O(m/n). For quadratic and cu-
bic compressions, e.g., this corresponds to O(m1/2) and
O(m2/3), respectively. These surprisingly mild scalings
translate directly into experimental feasibility and model-
training ease. In fact, we observe (see Training com-
plexity in the SI) that the number of epochs needed for
training also scale linearly with m. Moreover, in Sam-
ple complexity in the SI, we also prove upper bounds on
the numbers of measurements required to estimate L(✓).
For k = 2 and k = 3, e.g., these bounds coincide and give
Õ
�
m (6|E|+m)2

�
.

In Fig. 2 (right), in turn, we plot solution qualities ver-
sus k, for three MaxCut instances from the benchmark
set Gset [36] (see Numerical details). The total number

plots/scaling/Numerical_plot.png

FIG. 2. Gate complexity and performance. Left: Num-
ber of two-qubits gates needed for achieving an average esti-
mated approximation ratio r � 16/17 ⇡ 0.941 (over 250 non-
trivial random MaxCut instances and 5 random initializations
per instance) without the local bit-swap search (quantum-
circuit’s output x alone) versus m, both for quadratic and
cubic compressions. A linear scaling is observed in both cases.
Right: Maximum r (now including the local bit-swap search
step) over random initializations for three specific MaxCut
instances of different sizes as functions of the compression de-
gree k (10 random initializations were used for m = 800 and
m = 2000, and 5 for m = 7000). For a fair comparison,
the total number of parameters is kept the same for all k.
The horizontal lines denote the reported results of the leading
gradient-based SDP solver [33] (dotted lines) and the power-
ful Burer-Monteiro algorithm [34, 35] (dashed lines). Remark-
ably, our solver outperforms the former in all cases and even
the latter for the m = 2000 instance at k = 6 and 7.

of variational parameters is fixed by m (or as close to m
as allowed by the circuit ansatz) for a fair comparison,
with the circuit depths adjusted accordingly for each k.
In all cases, r increases with k up to a maximum, af-
ter which the performance degrades. This is consistent
with a limit in compression capability before compromis-
ing the model’s expressivity, as expected. Remarkably,
the results indicate that our solutions are competitive
with those of state-of-the-art classical solvers, such as
the leading gradient-based SDP solver [33], based on the
interior points method, and even the Burer-Monteiro al-
gorithm [34, 35], based on non-linear programming. Im-
portantly, while our solver performs a single optimization
followed by a single-bit swap search, the Burer-Monteiro
algorithm includes multiple re-optimizations and two-bit
swap searches (see Details on the comparison with Burer-
Monteiro). This highlights the potential for further im-
provements of our scheme. All in all, the impressive per-

7

mathematically formulated as the binary optimization

maximize
x2{�1,1}m

X

i,j2[m]

Wij(1� xi xj) . (3)

Since
P

i,j2[m] Wij is constant over x, Eq. (3) can be
rephrased as a minimization of the objective function
xTWx. This specific format is known as a quadratic
unconstrained binary optimization (QUBO). For generic
graphs, solving MaxCut exactly is NP-hard [44]. More-
over, even approximating the maximum cut to a ra-
tio rexact > 16

17 ⇡ 0.941 is NP-hard [45, 46]. In turn,
the best-known polynomial-time approximation scheme
is the Goemans-Williamson (GW) algorithm [47], with a
worst-case ratio rexact ⇡ 0.878. Under the Unique Games
Conjecture, this is the optimal achievable by an efficient
classical algorithm with worst-case performance guaran-
tees. If, however, one does not require performance guar-
antees, there exist powerful heuristics that in practice
produce cut values often higher than those of the GW
algorithm. Two examples are discussed in Best solutions
known in Numerical details.

Regularization term

The regularization term in Eq. (2) penalizes large cor-
relator values, thereby forcing the optimizer to remain in
the correlator domain where all possible bit string solu-
tions are expressible. Its explicit form is

L
(reg) = � ⌫

"
1

m

X

i2V

tanh
�
↵ h⇧ii

�2
#2

. (4)

The factor 1/m normalizes the term in square brackets
to O(1). The parameter ⌫ is an estimate of the maxi-
mum cut value: it sets the overall scale of L(reg) so that
it becomes comparable to the first term in Eq. (2). For
weighted MaxCut, we use the Poljak-Turzík lower bound
⌫ = w(G)/2 + w(Tmin)/4 [48], where w(G) and w(Tmin)
are the weights of the graph and of its minimum span-
ning tree, respectively. For MaxCut, this reduces to the
Edwards-Erdös bound [49] ⌫ = |E|/2 + (m � 1)/4. Fi-
nally, � is a free hyperparameter of the model, which we
optimize over random graphs to get � = 1/5. Such op-
timizations systematically show increased approximation
ratios due to the presence of L(reg) in Eq. (2) (see App.
Choice of loss function).

Numerical details

Choice of instances. The numerical simulations of
Figs. 2 (left) and Fig. 3 were performed on random
MaxCut instances generated with the well-known rudy
graph-generator [50] post-selected so as to filter out easy
instances. The post-selection consisted in discarding
graphs with less than 3 edges per node on average or

those for which a random cut gives an approximation
ratio r > 0.82. The latter is sufficiently far from the
Goemans-Williamson ratio 0.878 while still allowing effi-
cient generation. For the numerics in Fig. 2 (right) and
the experimental deployment in Fig. 4 we used 6 graphs
from standard benchmarking sets: the former used the
G14, G23, and G60 MaxCut instances from the Gset
repository [36], while the latter used G1 and G35 from
Gset and the weighted MaxCut instance pm3-8-50 from
the DIMACS library [51] (recently employed also in [26]).
Their features are summarized in Table I.

Best solutions known. For the generated instances, the
best solution is taken as the one with the highest cut
value between the (often coinciding) solutions produced
by two classical heuristics, namely the Burer-Monteiro
[34] and the Breakout Local Search [52] algorithms. For
the instances from benchmarking sets, we considered in-
stead the best known documented solution. The cor-
responding cut value, Vbest, is used to define the ap-
proximation ratio achieved by the quantum solution x⇤,
namely r = V(x⇤)/Vbest.

Graph m |E| Wij Type Use

pm3-8-50 512 1536 ±1 3D torus grid Experiment
G1 800 19176 1 random Experiment
G14 800 4694 1 planar Numerics
G23 2000 19990 1 random Numerics
G35 2000 11778 1 planar Experiment
G60 7000 17148 1 random Numerics

TABLE I. Benchmark instances used in this work.
Apart from the the number of vertices, edges, and edge
weights, we also include the type of graph as well as its use.

Variational Ansatz. As circuit Ansatz, we used the
brickwork architecture shown in Fig. 1, with layers of
single-qubit rotations, parameterized by a single angle,
followed by a layer of Mølmer-Sørensen (MS) two-qubit
gates, each with three variational parameters. Each
single-qubit gate layer contains rotations around a sin-
gle direction (X, or Y, or Z), one at a time, sequentially.
Furthermore, we observed that many of the other com-
monly used parameterized gate displays the same numer-
ical scalings up to a constant.

Quantum-circuit simulations. The classical simula-
tions of quantum circuits have been done using two li-
braries: Qibo [53, 54] for exact state-vector simulations
of systems up to 23 qubits, and Tensorly-Quantum [55]
for tensor-network simulations of larger qubit systems.

Optimization of circuit parameters. Two optimizers
were used for the model training. SLSQP from the scipy
library was used for systems small enough to calculate
the gradient using finite differences. In all other cases we
used Adam from the torch/tensorflow libraries, lever-
aging automatic differentiation to speed up computa-
tional time. As a stopping criterion for Adam, we halted
the training after 50 steps whose cumulative improve-
ment to the loss function was less then 0.01. For both op-
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The results suggest that the number of gates scales ap-
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the number of variational parameters, which is propor-
tional to the number of gates. In turn, the number of
circuit layers scales as O(m/n). For quadratic and cu-
bic compressions, e.g., this corresponds to O(m1/2) and
O(m2/3), respectively. These surprisingly mild scalings
translate directly into experimental feasibility and model-
training ease. In fact, we observe (see Training com-
plexity in the SI) that the number of epochs needed for
training also scale linearly with m. Moreover, in Sam-
ple complexity in the SI, we also prove upper bounds on
the numbers of measurements required to estimate L(✓).
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FIG. 2. Gate complexity and performance. Left: Num-
ber of two-qubits gates needed for achieving an average esti-
mated approximation ratio r � 16/17 ⇡ 0.941 (over 250 non-
trivial random MaxCut instances and 5 random initializations
per instance) without the local bit-swap search (quantum-
circuit’s output x alone) versus m, both for quadratic and
cubic compressions. A linear scaling is observed in both cases.
Right: Maximum r (now including the local bit-swap search
step) over random initializations for three specific MaxCut
instances of different sizes as functions of the compression de-
gree k (10 random initializations were used for m = 800 and
m = 2000, and 5 for m = 7000). For a fair comparison,
the total number of parameters is kept the same for all k.
The horizontal lines denote the reported results of the leading
gradient-based SDP solver [33] (dotted lines) and the power-
ful Burer-Monteiro algorithm [34, 35] (dashed lines). Remark-
ably, our solver outperforms the former in all cases and even
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the results indicate that our solutions are competitive
with those of state-of-the-art classical solvers, such as
the leading gradient-based SDP solver [33], based on the
interior points method, and even the Burer-Monteiro al-
gorithm [34, 35], based on non-linear programming. Im-
portantly, while our solver performs a single optimization
followed by a single-bit swap search, the Burer-Monteiro
algorithm includes multiple re-optimizations and two-bit
swap searches (see Details on the comparison with Burer-
Monteiro). This highlights the potential for further im-
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mathematically formulated as the binary optimization

maximize
x2{�1,1}m

X

i,j2[m]

Wij(1� xi xj) . (3)

Since
P

i,j2[m] Wij is constant over x, Eq. (3) can be
rephrased as a minimization of the objective function
xTWx. This specific format is known as a quadratic
unconstrained binary optimization (QUBO). For generic
graphs, solving MaxCut exactly is NP-hard [44]. More-
over, even approximating the maximum cut to a ra-
tio rexact > 16

17 ⇡ 0.941 is NP-hard [45, 46]. In turn,
the best-known polynomial-time approximation scheme
is the Goemans-Williamson (GW) algorithm [47], with a
worst-case ratio rexact ⇡ 0.878. Under the Unique Games
Conjecture, this is the optimal achievable by an efficient
classical algorithm with worst-case performance guaran-
tees. If, however, one does not require performance guar-
antees, there exist powerful heuristics that in practice
produce cut values often higher than those of the GW
algorithm. Two examples are discussed in Best solutions
known in Numerical details.

Regularization term

The regularization term in Eq. (2) penalizes large cor-
relator values, thereby forcing the optimizer to remain in
the correlator domain where all possible bit string solu-
tions are expressible. Its explicit form is

L
(reg) = � ⌫

"
1

m

X

i2V

tanh
�
↵ h⇧ii

�2
#2

. (4)

The factor 1/m normalizes the term in square brackets
to O(1). The parameter ⌫ is an estimate of the maxi-
mum cut value: it sets the overall scale of L(reg) so that
it becomes comparable to the first term in Eq. (2). For
weighted MaxCut, we use the Poljak-Turzík lower bound
⌫ = w(G)/2 + w(Tmin)/4 [48], where w(G) and w(Tmin)
are the weights of the graph and of its minimum span-
ning tree, respectively. For MaxCut, this reduces to the
Edwards-Erdös bound [49] ⌫ = |E|/2 + (m � 1)/4. Fi-
nally, � is a free hyperparameter of the model, which we
optimize over random graphs to get � = 1/5. Such op-
timizations systematically show increased approximation
ratios due to the presence of L(reg) in Eq. (2) (see App.
Choice of loss function).

Numerical details

Choice of instances. The numerical simulations of
Figs. 2 (left) and Fig. 3 were performed on random
MaxCut instances generated with the well-known rudy
graph-generator [50] post-selected so as to filter out easy
instances. The post-selection consisted in discarding
graphs with less than 3 edges per node on average or

those for which a random cut gives an approximation
ratio r > 0.82. The latter is sufficiently far from the
Goemans-Williamson ratio 0.878 while still allowing effi-
cient generation. For the numerics in Fig. 2 (right) and
the experimental deployment in Fig. 4 we used 6 graphs
from standard benchmarking sets: the former used the
G14, G23, and G60 MaxCut instances from the Gset
repository [36], while the latter used G1 and G35 from
Gset and the weighted MaxCut instance pm3-8-50 from
the DIMACS library [51] (recently employed also in [26]).
Their features are summarized in Table I.

Best solutions known. For the generated instances, the
best solution is taken as the one with the highest cut
value between the (often coinciding) solutions produced
by two classical heuristics, namely the Burer-Monteiro
[34] and the Breakout Local Search [52] algorithms. For
the instances from benchmarking sets, we considered in-
stead the best known documented solution. The cor-
responding cut value, Vbest, is used to define the ap-
proximation ratio achieved by the quantum solution x⇤,
namely r = V(x⇤)/Vbest.

Graph m |E| Wij Type Use

pm3-8-50 512 1536 ±1 3D torus grid Experiment
G1 800 19176 1 random Experiment
G14 800 4694 1 planar Numerics
G23 2000 19990 1 random Numerics
G35 2000 11778 1 planar Experiment
G60 7000 17148 1 random Numerics

TABLE I. Benchmark instances used in this work.
Apart from the the number of vertices, edges, and edge
weights, we also include the type of graph as well as its use.

Variational Ansatz. As circuit Ansatz, we used the
brickwork architecture shown in Fig. 1, with layers of
single-qubit rotations, parameterized by a single angle,
followed by a layer of Mølmer-Sørensen (MS) two-qubit
gates, each with three variational parameters. Each
single-qubit gate layer contains rotations around a sin-
gle direction (X, or Y, or Z), one at a time, sequentially.
Furthermore, we observed that many of the other com-
monly used parameterized gate displays the same numer-
ical scalings up to a constant.

Quantum-circuit simulations. The classical simula-
tions of quantum circuits have been done using two li-
braries: Qibo [53, 54] for exact state-vector simulations
of systems up to 23 qubits, and Tensorly-Quantum [55]
for tensor-network simulations of larger qubit systems.

Optimization of circuit parameters. Two optimizers
were used for the model training. SLSQP from the scipy
library was used for systems small enough to calculate
the gradient using finite differences. In all other cases we
used Adam from the torch/tensorflow libraries, lever-
aging automatic differentiation to speed up computa-
tional time. As a stopping criterion for Adam, we halted
the training after 50 steps whose cumulative improve-
ment to the loss function was less then 0.01. For both op-
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the decay of gradients, from barren plateaus of heights
e�O(m2) with single-qubit encodings to e�O(m2/k) with
Pauli-correlation encodings. In turn, the circuit depth
scales sublinearly in m, as O(m1/2) for quadratic (k = 2)
compressions and O(m2/3) for cubic (k = 3) ones, e.g.
All these features make our scheme both experimentally-
and training-friendly, leading to quality of solutions sig-
nificantly superior to those of previous quantum schemes.

For example, for m = 2000 and m = 7000 MaxCut
instances, our numerical solutions are competitive with
those of semi-definite program relaxations, including the
powerful Burer-Monteiro algorithm. This is relevant as a
basis for quantum-inspired classical solvers. In addition,
we deploy our solver on IonQ hardware, observing an im-
pressive performance even without quantum error mitiga-
tion. For example, for a MaxCut instance with m = 2000
vertices encoded into n = 17 trapped-ion qubits, we ob-
tain estimated approximation ratios above the hardness
threshold r ⇡ 0.941. This is the highest quality reported
by an experimental quantum solver on sizes beyond a few
tens for MaxCut [8, 32] and a few hundreds for combina-
torial optimizations in general [9, 10]. Our results open
up a promising framework to develop competitive solvers
for large-scale problems with small quantum devices.

RESULTS

Quantum solvers with polynomial space compression

We solve combinatorial optimizations over m = O
�
nk
�

binary variables using only n qubits, for k a suitable in-
teger of our choice. Such a compression is achieved by
encoding the variables into m Pauli-matrix correlations
across multiple qubits. More precisely, with the short-
hand notation [m] := {1, 2, . . .m}, let x := {xi}i2[m]

denote the string of optimization variables and choose a
specific subset ⇧ := {⇧i}i2[m] of m  4n � 1 traceless
Pauli strings ⇧i, i.e. of n-fold tensor products of identity
(11) or Pauli (X, Y , and Z) matrices, excluding the n-
qubit identity matrix 11⌦n. We define a Pauli-correlation
encoding (PCE) relative to ⇧ as

xi := sgn
�
h⇧ii

�
for all i 2 [m], (1)

where sgn is the sign function and h⇧ii := h |⇧i | i is
the expectation value of ⇧i over a quantum state | i.
We focus on strings with k single-qubit traceless Pauli
matrices. In particular, we consider encodings ⇧(k) :=�
⇧(k)

1 , . . . ,⇧(k)
m
 

where each ⇧(k)
i is a permutation of ei-

ther X⌦k
⌦ 11⌦n�k, Y ⌦k

⌦ 11⌦n�k, or Z⌦k
⌦ 11⌦n�k (see

left panel of Fig. 1 for an example with k = 2). That is,
⇧(k) is the union of 3 sets of mutually-commuting strings.
This is experimentally convenient, since only three mea-
surement settings are required throughout. Using all pos-
sible permutations for the encoding yields m = 3

�n
k

�
. In

this work, we deal mostly with k = 2 and k = 3, corre-
sponding to m = 3

2n(n � 1) and m = 1
2n(n � 1)(n � 2),

respectively. The single-qubit encodings of [25, 26], in
turn, correspond to PCEs with k = 1.

The specific problem we solve is weighted MaxCut, a
paradigmatic NP-complete class of optimization prob-
lems over a weighted graph G, defined by a (symmet-
ric) adjacency matrix W 2 Rm⇥m. Each entry Wij

contains the weight of an edge (i, j) in G. The set E
of edges of G consists of all (i, j) such that Wij 6= 0.
We denote by |E| the cardinality of E. In the special
case where all weights are either zero or one, the prob-
lem is fully specified by E and belongs to the (still NP-
complete) MaxCut class (see MaxCut problems). The
goal of these problems is to maximize the total weight
of edges cut over all possible bipartitions of G. This
is done by maximizing the quadratic objective function
V(x) :=

P
(i,j)2E Wij(1� xi xj) (the cut value).

We parameterize the state in Eq. (1) as the output of
a quantum circuit with parameters ✓, | i = | (✓)i, and
optimize over ✓ using a variational approach [17, 18]. As
circuit Ansatz, we use the brickwork architecture shown
in Fig. 1 (see Numerical details for details on the varia-
tional Ansatz). The goal of the parameter optimization
is to minimize the non-linear loss function

L =
X

(i,j)2E

Wij tanh
�
↵ h⇧ii

�
tanh

�
↵ h⇧ji

�
+ L

(reg). (2)

The first term corresponds to a relaxation of the binary
problem where the sign functions in Eq. (1) are re-
placed by smooth hyperbolic tangents, better-suited for
gradient-descent methods [26]. The second term, L(reg)

(see Regularization term), forces all correlators to go to-
wards zero, which is observed to improve the solver’s per-
formance (see Choice of loss function in the SI). One way
to interpret the latter is in view of frustration effects, by
virtue of which the correlator magnitudes cannot all be
arbitrarily close to one. For instance, in the case of two-
body correlators (k = 2), we prove in Frustration bounds
in the SI that, if one imposes |h⇧ii| = c for all i 2 [m],
then c = O(m�1/2) is required in order to be able to en-
code arbitrary bit strings. However, this also restricts the
tanh to its linear regime (tanh(z) ⇡ z for small z), which
is inconvenient for the training. Hence, to restore the
non-linear behaviour, we introduce the rescaling factor
↵ = O(c�1) (see Choice of ↵ in the SI).

Once the training is complete, the circuit output state
is measured and a bit-string x is obtained via Eq. (1).
Then, as a classical post-processing step, we perform one
round of single-bit swap search (of complexity O(|E|))
around x in order to find potential better solutions
nearby (see Numerical details). The result of the search,
x⇤, with cut value V(x⇤), is the final output of our solver.

Our work differs from [27–31] in fundamental ways.
First, as mentioned, those studies focus mainly on ex-
ponential compressions in qubit number. These are
also possible with PCEs, since there are 4n � 1 trace-
less operators available. However, apart from automat-
ically rendering the schemes classically simulable effi-
ciently [27, 30], exponential compressions strongly limit

2-qubit Pauli string

• Graph-instance agnostic 
• Quadratic compression in qubit number:

• Generalizes single-qubit QRACs 
T. Patti et al. (2022); B. Fuller et al. (2022) 

• Polynomial compression: sweeter spot than 
exponential compressions 
B. Tan et al. (2021); E. X. Huber et al. (2023); I. D. 
Leonidas et al. (2023); Y. Tene-Cohen et al. (2023) 
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the decay of gradients, from barren plateaus of heights
e�O(m2) with single-qubit encodings to e�O(m2/k) with
Pauli-correlation encodings. In turn, the circuit depth
scales sublinearly in m, as O(m1/2) for quadratic (k = 2)
compressions and O(m2/3) for cubic (k = 3) ones, e.g.
All these features make our scheme both experimentally-
and training-friendly, leading to quality of solutions sig-
nificantly superior to those of previous quantum schemes.

For example, for m = 2000 and m = 7000 MaxCut
instances, our numerical solutions are competitive with
those of semi-definite program relaxations, including the
powerful Burer-Monteiro algorithm. This is relevant as a
basis for quantum-inspired classical solvers. In addition,
we deploy our solver on IonQ hardware, observing an im-
pressive performance even without quantum error mitiga-
tion. For example, for a MaxCut instance with m = 2000
vertices encoded into n = 17 trapped-ion qubits, we ob-
tain estimated approximation ratios above the hardness
threshold r ⇡ 0.941. This is the highest quality reported
by an experimental quantum solver on sizes beyond a few
tens for MaxCut [8, 32] and a few hundreds for combina-
torial optimizations in general [9, 10]. Our results open
up a promising framework to develop competitive solvers
for large-scale problems with small quantum devices.

RESULTS

Quantum solvers with polynomial space compression

We solve combinatorial optimizations over m = O
�
nk
�

binary variables using only n qubits, for k a suitable in-
teger of our choice. Such a compression is achieved by
encoding the variables into m Pauli-matrix correlations
across multiple qubits. More precisely, with the short-
hand notation [m] := {1, 2, . . .m}, let x := {xi}i2[m]

denote the string of optimization variables and choose a
specific subset ⇧ := {⇧i}i2[m] of m  4n � 1 traceless
Pauli strings ⇧i, i.e. of n-fold tensor products of identity
(11) or Pauli (X, Y , and Z) matrices, excluding the n-
qubit identity matrix 11⌦n. We define a Pauli-correlation
encoding (PCE) relative to ⇧ as

xi := sgn
�
h⇧ii

�
for all i 2 [m], (1)

where sgn is the sign function and h⇧ii := h |⇧i | i is
the expectation value of ⇧i over a quantum state | i.
We focus on strings with k single-qubit traceless Pauli
matrices. In particular, we consider encodings ⇧(k) :=�
⇧(k)

1 , . . . ,⇧(k)
m
 

where each ⇧(k)
i is a permutation of ei-

ther X⌦k
⌦ 11⌦n�k, Y ⌦k

⌦ 11⌦n�k, or Z⌦k
⌦ 11⌦n�k (see

left panel of Fig. 1 for an example with k = 2). That is,
⇧(k) is the union of 3 sets of mutually-commuting strings.
This is experimentally convenient, since only three mea-
surement settings are required throughout. Using all pos-
sible permutations for the encoding yields m = 3

�n
k

�
. In

this work, we deal mostly with k = 2 and k = 3, corre-
sponding to m = 3

2n(n � 1) and m = 1
2n(n � 1)(n � 2),

respectively. The single-qubit encodings of [25, 26], in
turn, correspond to PCEs with k = 1.

The specific problem we solve is weighted MaxCut, a
paradigmatic NP-complete class of optimization prob-
lems over a weighted graph G, defined by a (symmet-
ric) adjacency matrix W 2 Rm⇥m. Each entry Wij

contains the weight of an edge (i, j) in G. The set E
of edges of G consists of all (i, j) such that Wij 6= 0.
We denote by |E| the cardinality of E. In the special
case where all weights are either zero or one, the prob-
lem is fully specified by E and belongs to the (still NP-
complete) MaxCut class (see MaxCut problems). The
goal of these problems is to maximize the total weight
of edges cut over all possible bipartitions of G. This
is done by maximizing the quadratic objective function
V(x) :=

P
(i,j)2E Wij(1� xi xj) (the cut value).

We parameterize the state in Eq. (1) as the output of
a quantum circuit with parameters ✓, | i = | (✓)i, and
optimize over ✓ using a variational approach [17, 18]. As
circuit Ansatz, we use the brickwork architecture shown
in Fig. 1 (see Numerical details for details on the varia-
tional Ansatz). The goal of the parameter optimization
is to minimize the non-linear loss function

L =
X

(i,j)2E

Wij tanh
�
↵ h⇧ii

�
tanh

�
↵ h⇧ji

�
+ L

(reg). (2)

The first term corresponds to a relaxation of the binary
problem where the sign functions in Eq. (1) are re-
placed by smooth hyperbolic tangents, better-suited for
gradient-descent methods [26]. The second term, L(reg)

(see Regularization term), forces all correlators to go to-
wards zero, which is observed to improve the solver’s per-
formance (see Choice of loss function in the SI). One way
to interpret the latter is in view of frustration effects, by
virtue of which the correlator magnitudes cannot all be
arbitrarily close to one. For instance, in the case of two-
body correlators (k = 2), we prove in Frustration bounds
in the SI that, if one imposes |h⇧ii| = c for all i 2 [m],
then c = O(m�1/2) is required in order to be able to en-
code arbitrary bit strings. However, this also restricts the
tanh to its linear regime (tanh(z) ⇡ z for small z), which
is inconvenient for the training. Hence, to restore the
non-linear behaviour, we introduce the rescaling factor
↵ = O(c�1) (see Choice of ↵ in the SI).

Once the training is complete, the circuit output state
is measured and a bit-string x is obtained via Eq. (1).
Then, as a classical post-processing step, we perform one
round of single-bit swap search (of complexity O(|E|))
around x in order to find potential better solutions
nearby (see Numerical details). The result of the search,
x⇤, with cut value V(x⇤), is the final output of our solver.

Our work differs from [27–31] in fundamental ways.
First, as mentioned, those studies focus mainly on ex-
ponential compressions in qubit number. These are
also possible with PCEs, since there are 4n � 1 trace-
less operators available. However, apart from automat-
ically rendering the schemes classically simulable effi-
ciently [27, 30], exponential compressions strongly limit

(forces small Pauli correlators)

• Encodes graph instance 
• Circuit-Ansatz agnostic 
• Highly non-linear relaxation of the binary problem 
• Ameanable to standard q error mitigation



Numerical performance



Circuit complexity and performance 

• Depth sub-linear in m! 
• Trains well (even in under-parametrization!)

Leading 
SDP solver

Burer-Monteiro 
algorithm

Competitive with state of the art solvers!

• Non-trivial random MaxCut instances 
• 1D brickwork (hardware-efficient) Ansatz 



A convenient by-product of the encoding: intrinsic barren plateau mitigation



Barren plateaus mitigation as a built-in feature

• Proven supra-polynomial suppression in 
variance decay in m! 

• Plateaus at depth ~ 8.5 n. 

BPs for Pauli-correlation encoding:

• Exponential decay in n of gradient 
variance over random initializations. 

BPs (concentration of measure):

J. R. McLean et al. (2021)

Aver. approx. ratio 0.941 at depth ~ n

Analytical scaling 



Experimental deployment on trapped-ion quantum hardware



Weighted MaxCut on IonQ’s Aria-1 and Quantinuum’s H1-1 devices

1D brickwork Ansatz: native IonQ and Quantinuum gates. 

Goemans-Williamson threshold 

Worst-case hardness threshold 
(no U.G.C) 

• First-ever experiment with such high-quality solutions for these sizes! 
• Previous experiments with QAOA: m= 414 and aver. (max.) r = 0.57 (0.69).

A. Abbas et al. (2023)



Conclusions on part I

• Pauli-correlation encoding: QUBOs with polynomially fewer qubits   

• Non-linear cost function trains even in under-parametrization 

• Barren plateau mitigation as a provable built-in feature 

• Unprecedented performance both numerically and experimentally 

• Amenable to standard error-mitigation  

• Experimental training: (pre-)train classically?

M. Sciorilli, L. Borges, T. Patti, Diego García-Martín,  G. Camillo, A. Anandkumar, and LA, 
Towards large-scale quantum optimization solvers with few qubits, arXiv:2401.09421.
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