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Quantum @ CSIRO

CSIRO: Who we are

Australia’s national science agency

We delivered 
$10.2 billion of 

annual benefit to 
the nation

State-of-the-art 
national research  

infrastructure

5,600+ dedicated 
people working 
across ~50 sites 

globally

One of the world’s largest 
multidisciplinary science 

and technology 
organisations



Quantum @ CSIRO

CSIRO’s internal cross-disciplinary Business Units and where 
"quantum tech" could be developed
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imaging
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Engineering

Quantum 
devices

New modes to 
generate and 
harness Energy

New modes to generate and 
harness Resources and Food
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Quantum @ Data61

Lower the barrier for quantum 
application developers

Applications
Algorithms

Benchmarking/Performance
Quantum Programming
Logical Qubit Compiler

Quantum Error Correction
Quantum Control

Hardware Mapping
Quantum Processor

Quantum Software Stack

Quantum
Algorithms

& 
Applications

Machine 
Learning

Cyber-
Security

Digital
Health

Transport

Climate 
Science

Materials 
Design

Quantum Algorithms & Applications

Advance the usability of 
quantum technologies 

Adaptation of quantum technologies 
with trust and responsible Use

Quantum Security and Responsible Use

Applications:
Computational capability of quantum computing offers the potential to revolutionize many areas of research and technologies:

ü Physical Sciences (Materials Design, Physics, Chemistry …)
ü Data Science (Machine Learning, Data Analysis, Factoring)
ü Optimization (Traffic Routing, Finance, Logistics, Scheduling)



Benchmarking Quantum Computers in NISQ Era and beyond

Ultimate Goal:

Current State:

Quantum
Computer

Quantum
Computer

Solution to a real-world 
problem that we cannot solve

How good is the current quantum 
computer and how to make it better

Algorithm

Algorithm

Fault-Tolerant Era

NISQ Era

->Scalable Devices
->Sufficiently Low Error Rates
->Error Correction

The current generation of quantum processors are often referred to as “Near-term Intermediate Scale Quantum” devices.

NISQ devices will range from a few hundred to a few thousand qubits. 



Benchmarking Quantum Computers in NISQ Era and beyond

• Development of benchmarks for quantum processors will allow universal performance measures, 
leading to a coordinated approach towards practicality.

• With increasing number of qubits and their improved quality to run deeper circuits, benchmarks 
applicable at individual qubit level or gate level may not scale well and provide useful comparison 
metrics. 

• Likewise, benchmarking quantum processors by running quantum algorithms may provide a holistic 
insight but would be very specific to the implemented circuits. 

• Standardisation of Quantum Technologies should establish global benchmarks, e.g., JTC-3

Can quantum processors be benchmarked based on error syndrome measurements?

What can we learn about noise in a quantum processor by error syndrome measurements?



Errors in Quantum Computers

• Noise degrades quantum device performance.
• Control Errors
• State Preparation and Measurement Errors
• Decoherence

• Individual circuits become exponentially unlikely to give correct 
outcomes.

• Expectation values require exponentially many shots for sufficient 
mitigation.

3 qubit Grover’s algorithm performance with errors. 
(Simulated with qiskit https://qiskit.org/)

3 qubit Grover’s algorithm circuit. (Visualized with the QUI simulator at 
https://qui.research.unimelb.edu.au/)

S. Brandhofer, S. Devitt, and I. Polian. “Arsonisq: Analyzing quantum algorithms on 
near-term architectures”. In 2021 IEEE European Test Symposium (ETS). IEEE (2021).



• Error rates are one of the primary measures of progress in 
quantum computing.

• Threshold theorems exist which allow arbitrary suppression of 
errors only if error rates can be reduced beneath a particular 
value.

• Knowledge of error model details allows improved choice of 
code, decoding and circuit compilation.

• Noise characteristics of quantum devices feature non-markovian 
elements and drift continuously (rarely modelled in QEC 
literature). “ibm_montreal” error rates for gates relevant to 

QEC.

J. R. Wootton. “Measurements of floquet code 
plaquette stabilizers” (2022). arXiv:2210.13154.

Can anything be said about the noise present in a quantum device 
without repeatedly performing dedicated benchmarking circuits?

Error Models



• Single-qubit randomized 
benchmarking.

• Two-qubit randomized 
benchmarking.

E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and 
D. J. Wineland. “Randomized benchmarking of quantum gates”. Phys. Rev. A 77, 012307 (2008).

E. Magesan, J. M. Gambetta, and J. Emerson. “Characterizing quantum gates via randomized 
benchmarking”. Phys. Rev. A 85, 042311 (2012).

Calculate average error rates by 
fitting to P = 𝐴𝛼! + 𝐵, for 𝑙 Cliffords.

Calculate individual error rates with 
interleaved randomized benchmarking.

Characterizing Errors: Randomized Benchmarking



Analytic Change Rate Expressions

• Consider an individual randomized benchmarking circuit.

• With no noise, the second set of gates applies an inverse and ‘00’ is 
always measured.

• With depolarizing noise, what is the relationship between the 
underlying noise model and the change rate of each individual 
measurement?

• After each operation, an error can occur. Suppose 
these all have uniform strength, 𝑝.

• We can count the number of circuit elements or sites 
that can cause errors to propagate and change a 
given measurement outcome, 𝑛".

• The measurement change rate is then,

𝑅 =
1
2 1 − 1 − 𝑝 #! ,

which corresponds to half the probability that no error 
occurs after any of the relevant circuit elements.

1
2
1 − 1 − 𝑝 '

1
2
1 − 1 − 𝑝 (

Is depolarizing noise realistic? Are these 
systems of equations over-determined or 
under-determined in QEC?



Heavy Hexagon Code

• Subsystem code with qubits on a heavy-hexagon lattice.
• Z stabilizers: surface-code type:

𝑍! = 𝑍⊗ 𝑍⊗ 𝑍⊗ 𝑍

• X stabilizers: Bacon-Shor type:

𝑋! = 𝑋⊗𝑋⊗𝑋⊗𝑋⊗𝑋⊗𝑋

• The weight of the X stabilizers increases with code 
distance.

• Gauge operators are measured rather than stabilizer 
operators.

• Gauge operators do not commute with one another. 
However, they each commute with the logical operators 
of the code, which is sufficient to not change logical 
information.  

Data qubit

Ancilla qubits:
Flag qubit                             Measure qubit 

Distance 3 heavy-hexagon code.

C. Chamberland, G. Zhu, T. J. Yoder, J. B. Hertzberg, and A. W. Cross. “Topological and 
subsystem codes on low-degree graphs with flag qubits”. Phys. Rev. X 10, 011022 (2020)



Individual Operators

• Different initial product 
states.

• Dependence on initial state.

• Fluctuations with device 
calibration.

• Average depolarizing 
parameter of around 3.3%, 
corresponding to error rate 
of 2.5% for single qubit 
gates.

S. Gicev, L. C. L. Hollenberg, and M. Usman. “Quantum computer error structure probed 
by quantum error correction syndrome measurements” (2023). arXiv:2310.12448.
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Simultaneous Measurements

• The eigenvalues of larger operators are inferred from the 
measurement results of smaller operators.

• Generally higher change rates due to dependence on 
additional gates.

• Results consistent with average depolarizing noise 
parameter of 4.8% corresponding to single qubit error 
rates of 3.6%

Z Stabilizer

X Stabilizer



Repeated Measurements

• Repeated Z, X and both operator 
measurements.

• Instances of steadily rising R in 
experiment which cannot occur under 
fixed Pauli-based noise.

• Uniform error rate simulations overlap 
by operator type.

• Simultaneously fitting using 
inhomogeneous noise captures some 
of the different orderings.

Z. Chen et al. “Exponential suppression of bit or phase errors 
with cyclic error correction”. Nature 595, 383–387 (2021).

Only Z

Only X

Z and X



Correlations in Repeated Measurements

• Additional Information can be found in correlated change 
rates. Results are shown for repeated Z gauge operator 
measurements.

• Correlation matrix elements,

𝑝$% =
𝑥$𝑥% − 𝑥$ 𝑥%

1 − 2 𝑥$ 1 − 2 𝑥%
,

where 𝑥$  is 0 if a particular operator didn’t change since the 
last cycle and 1 otherwise.

• Minor gridlines correspond to different measurement cycles.

• There is significantly more correlations among different 
cycles than expected under depolarizing noise.

Space-like error
Time-like error

Space-time-like error
Correlated errorZ. Chen et al. “Exponential suppression of bit or phase errors 

with cyclic error correction”. Nature 595, 383–387 (2021).



Error Correction Over > 4 Million Qubits!

𝝁sec Latency, Comparable Threshold

Quantum Error Correction by Artificial Intelligence



Quantum Error Correction on IBM Quantum Processor



Quantum Error Correction on IBM Quantum Processor

• ANN decoder was implemented on error 
measurements from IBM Quantum Devices

• Direct comparison was made with MWPM 
algorithm

• ANN decoder accurately decode complex noise 
from IBM devices.



Summary

• Quantum computers are scaling up faster than ever before

• Benchmarks designed at qubit and gate levels may not provide 
useful insights at scale

• New benchmarking methods are needed to measure the 
performance of quantum processors which are:
• Reliability or Quality
• Scalability
• Universality
• Relevance for Applications, e.g., resource estimation





A Linear System Appears

• Suppose instead that each gate had a unique error rate, 𝑝". The 
change rate 𝑅 generalizes to,

𝑅 =
1
2 1 −*

"

1 − 𝑝" #! ,

 where the 𝑖-th gate propagates errors 𝑛" times. 

• For simplicity define  𝐹 = 1 − 2𝑅 and 𝑓" = 1 − 𝑝".

• If we take logarithms and consider different circuits or 
measurements over index 𝑗 we can write a linear relationship 
involving the variables of the system,

log 𝐹$ =4
"

𝑛"$ log 𝑓" .

Agreement (up to shot noise) among change rate 
polynomials and Monte Carlo simulations of Clifford 
circuits to be discussed later.

Is depolarizing noise realistic? Are these 
systems of equations over-determined or 
under-determined in QEC?


