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CSIRO: Who we are

Australia’s national science agency
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One of the world’s largest 5,600+ dedicated State-of-the-art We delivered
multidisciplinary science people working national research $10.2 billion of
and technology across ~50 sites infrastructure annual benefit to

organisations globally the nation
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CSIRO’s internal cross-disciplinary Business Units and where

"quantum tech" could be developed
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Quantum Software Stack

Algorithms

Benchmarking/Performance

Quantum Programming

Logical Qubit Compiler

Lower the barrier for quantum

application developers

Applications:

Quantum (@ Data61

Quantum Algorithms & Applications

Quantum Security and Responsible Use

Machine
Learning
Transport Cyber-
Security
Quantum
Algorithms
&
Applications
Climate o Digital
Science Health
Materials
Design

Advance the usability of
quantum technologies

This chair might
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app's encryption?
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Adaptation of quantum technologies
with trust and responsible Use

Computational capability of quantum computing offers the potential to revolutionize many areas of research and technologies:

v' Physical Sciences (Materials Design, Physics, Chemistry ...)
v" Data Science (Machine Learning, Data Analysis, Factoring)
v Optimization (Traffic Routing, Finance, Logistics, Scheduling)
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The current generation of quantum processors are often referred to as “Near-term Intermediate Scale Quantum” devices.

NISQ devices will range from a few hundred to a few thousand qubits.

NISQ Era

Current State:  Aleorithm ‘ ‘ How good is the current quantum
) & computer and how to make it better

->Scalable Devices
->Sufficiently Low Error Rates
->FError Correction

lti Goal: Aleorith ‘ Solution to a real-world
Ultimate Goal: Algorithm ‘ problem that we cannot solve

Fault-Tolerant Era
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* Development of benchmarks for quantum processors will allow universal performance measures,
leading to a coordinated approach towards practicality.

* With increasing number of qubits and their improved quality to run deeper circuits, benchmarks
applicable at individual qubit level or gate level may not scale well and provide useful comparison
metrics.

* Likewise, benchmarking quantum processors by running quantum algorithms may provide a holistic
insight but would be very specific to the implemented circuits.

» Standardisation of Quantum Technologies should establish global benchmarks, e.g., JTC-3

Can quantum processors be benchmarked based on error syndrome measurements?

What can we learn about noise in a quantum processor by error syndrome measurements?
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* Noise degrades quantum device performance. }
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““‘ 3 qubit Grover’s algorithm performance with errors.
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3 qubit Grover’s algorithm circuit. (Visualized with the QUI simulator at
https://qui.research.unimelb.edu.au/)

S. Brandhofer, S. Devitt, and I. Polian. “Arsonisqg: Analyzing quantum algorithms on
near-term architectures”. In 2021 IEEE European Test Symposium (ETS). IEEE (2021).
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Error rates are one of the primary measures of progress in
gquantum computing.

Threshold theorems exist which allow arbitrary suppression of
errors only if error rates can be reduced beneath a particular
value.

Knowledge of error model details allows improved choice of
code, decoding and circuit compilation.

Noise characteristics of qguantum devices feature non-markovian
elements and drift continuously (rarely modelled in QEC
literature).

Can anything be said about the noise present in a quantum device
without repeatedly performing dedicated benchmarking circuits?

Error Rate Cumulative Distribution
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“ibm_montreal” error rates for gates relevant to
QEC.

J. R. Wootton. “Measurements of floquet code
plaquette stabilizers” (2022). arXiv:2210.13154.
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 Single-qubit randomized
benchmarking.
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Calculate average error rates by
fitting to P = Aa! + B, for L Cliffords.

E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and
D. J. Wineland. “Randomized benchmarking of quantum gates”. Phys. Rev. A 77, 012307 (2008).

Characterizing Errors: Randomized Benchmarking

* Two-qubit randomized
benchmarking.
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Clifford Length

Calculate individual error rates with
interleaved randomized benchmarking.

E. Magesan, J. M. Gambetta, and J. Emerson. “Characterizing quantum gates via randomized
benchmarking”. Phys. Rev. A 85, 042311 (2012).
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Analytic Change Rate Expressions

* Consider an individual randomized benchmarking circuit. * After each opera'gion, an error can occur. Suppose
these all have uniform strength, p.

* We can count the number of circuit elements or sites
that can cause errors to propagate and change a
given measurement outcome, n.

* The measurement change rate is then,

—(1— 1—})7
—_ _(I — (l _p)”s),

* With no noise, the second set of gates applies an inverse and ‘00’ is
always measured. which corresponds to half the probability that no error
occurs after any of the relevant circuit elements.

* With depolarizing noise, what is the relationship between the

underlying noise model and the change rate of each individual Is depolarizing noise realistic? Are these
measurement?

systems of equations over-determined or
under-determined in QEC?
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e Subsystem code with qubits on a heavy-hexagon lattice. O
e Z stabilizers: surface-code type:
Zs=72ZQRQZRKRXZRQ7Z
e X stabilizers: Bacon-Shor type:
N\
Xs=XQRQXRQXQXRXRXRQXKRX

* The weight of the X stabilizers increases with code

distance. © Data qubit
* Gauge operators are measured rather than stabilizer Othoae @ Vieasure qubit

operators.

Distance 3 heavy-hexagon code.

* Gauge operators do not commute with one another.
However, they each commute with the logical operators
of the code, which is sufficient to not change logical

I nform atlo n. C. Chamberland, G. Zhu, T. J. Yoder, J. B. Hertzberg, and A. W. Cross. “Topological and

subsystem codes on low-degree graphs with flag qubits”. Phys. Rev. X 10, 011022 (2020)
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S. Gicey, L. C. L. Hollenberg, and M. Usman. “Quantum computer error structure probed
by quantum error correction syndrome measurements” (2023). arXiv:2310.12448.
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Z Stabilizer
(a)
* The eigenvalues of larger operators are inferred from the 04L
measurement results of smaller operators.
* Generally higher change rates due to dependence on o
additional gates. 0.2 =
7 ____ Surface Code R
* Results consistent with average depolarizing noise giegator
parameter of 4.8% corresponding to single qubit error , P 0.35
0.0
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Repeated Z, X and both operator
measurements.

Instances of steadily rising R in
experiment which cannot occur under
fixed Pauli-based noise.

Uniform error rate simulations overlap
by operator type.

Simultaneously fitting using
inhomogeneous noise captures some
of the different orderings.

Z. Chen et al. “Exponential suppression of bit or phase errors
with cyclic error correction”. Nature 595, 383-387 (2021).
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Repeated Measurements

EI‘.‘\/IV > quant-ph > arXiv:2310.12448

Quantum Physics

[Submitted on 19 Oct 2023 (v1), last revised 25 Mar 2024 (this version, v2)]

Quantum computer error structure probed by quantum error correction Syndrome measurements
Spiro Gicev, Lloyd C. L. Hollenberg, Muhammad Usman

Experiment Depolarizing Biased Inhomogeneous Operators
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e Additional Information can be found in correlated change
rates. Results are shown for repeated Z gauge operator
measurements.

e Correlation matrix elements,

(i) = () ()
(1 —2¢xN(1 - 2(x))’

where x; is 0 if a particular operator didn’t change since the
last cycle and 1 otherwise.

bij =

* Minor gridlines correspond to different measurement cycles.

* There is significantly more correlations among different
cycles than expected under depolarizing noise.

Z. Chen et al. “Exponential suppression of bit or phase errors
with cyclic error correction”. Nature 595, 383—-387 (2021).

Correlations in Repeated Measurements

EI‘;KIV > quant-ph > arXiv:2310.12448

Quantum Physics
[Submitted on 19 Oct 2023 (v1), last revised 25 Mar 2024 (this version, v2)]

Quantum computer error structure probed by quantum error correction Syndrome measurements
Spiro Gicev, Lloyd C. L. Hollenberg, Muhammad Usman
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Surface Code -1 X Stabilizers -1 Z Stabilizers Z Boundary X Boundary

E
A scalable and fast artificial neural network syndrome n
decoder for surface codes .

Spiro Gicev', Lloyd C. L. Hollenberg', and Muhammad Usman'-%3

ANN Training and Operation
{
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Error Correction Over > 4 Million Qubits!  Samples

More details in paper:
Quantum 7, 1058 (2023)

usec Latency, Comparable Threshold
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Quantum Error Correction on IBM Quantum Processor

\/ > quant-ph > arXiv:2311.15146

Quantum Physics

[Submitted on 26 Nov 2023]
Artificial Neural Network Syndrome Decoding on IBM Quantum Processors

Brhyeton Hall, Spiro Gicev, Muhammad Usman
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Quantum Physics

X Logical Error Rate Z Logical Error Rate
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[Submitted on 26 Nov 2023]
Artificial Neural Network Syndrome Decoding on

Brhyeton Hall, Spiro Gicev, Muhammad Usman g 1014
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* Direct comparison was made with MWPM
algorithm
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* ANN decoder accurately decode complex noise
from IBM devices.
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Quantum computers are scaling up faster than ever before

Benchmarks designed at qubit and gate levels may not provide
useful insights at scale

New benchmarking methods are needed to measure the
performance of quantum processors which are:
Reliability or Quality

Scalability

Universality
Relevance for Applications, e.g., resource estimation

PHYSICAL QUBIT ROADMAP FOR QUANTUM COMPUTER
- HISTORY AND FUTURE

Craph below shows physiced gubit roadmin (Note for & quantum computer, 50 logical qubits mirinum e reguired - it mesrs S0 000 physical qubits)
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o

0.020 —
* Suppose instead that each gate had a unique error rate, p;. The 0015 | o ewiyz o sesyx e sestyo
change rate R generalizes to, % o0 ® Moz @ fnalx final_b
1 $ooms) e
R = E 1 — 1_[(1 — pi)ni , § 0000 | :¥¥Rm 390 Mgee '-",° ..... ..
i 8 =0.005 -
g -0.010
where the i-th gate propagates errors n; times. = 0
-0.020 T T T T
* For simplicity define F =1 —2Rand f; = 1 — p;. o0 - N peession o o
Agreement (up to shot noise) among change rate
* If we take logarithms and consider different circuits or polynomials and Monte Carlo simulations of Clifford

circuits to be discussed later.

measurements over index j we can write a linear relationship
involving the variables of the system,

log(Fj) = 2 n;jlog(f;) .
i Is depolarizing noise realistic? Are these
systems of equations over-determined or

under-determined in QEC?




