

## **Quantum Technologies EC**

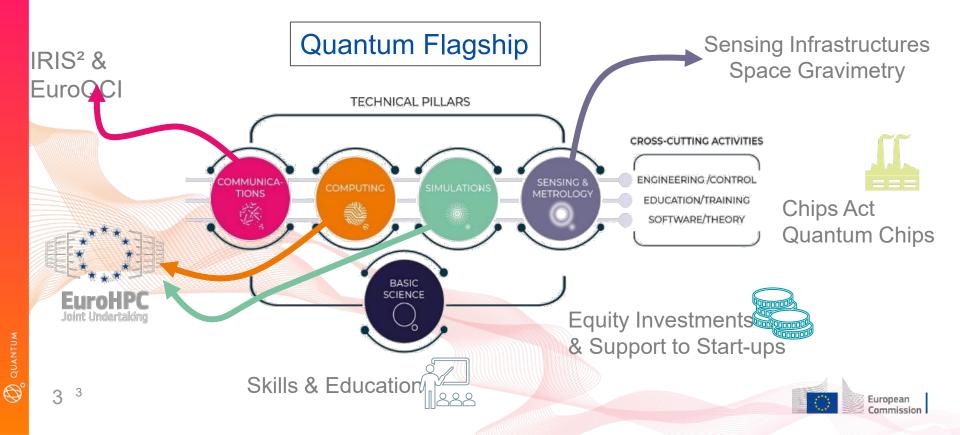
## & Benchmarking June 2024

**Oscar Diez** 

Head of Quantum Computing

HPC and Quantum Technologies Unit

**European Commission** 






## Strategic Pillars of the EU Quantum Ecosystems







## Quantum Flaghip Ramp-up phase



## Quantum Communications

#### Flagship: from ramp -up to tech demo

Projects started under Horizon Europe (from 2022):

→ **FPA QIA** (7y) → full-stack prototype network



→ RIA HyperSpace → entangled photons for long-distance space Qcomm  $\rightarrow \dots$ 

#### Bringing technology to full maturity:

- → Performance/functionality improvements
- $\rightarrow$  Industrialisation; towards market uptake



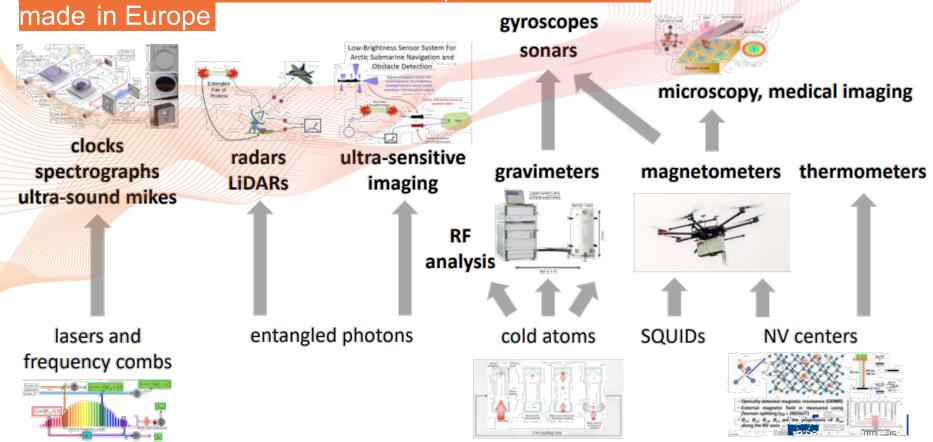


## EU Wide QT Network: First Step

- EuroQCI
- Integrated **satellite and terrestrial** system spanning the whole EU for ultra-secure exchange of cryptographic keys
- Part of the EU Secure Connectivity Programme (IRIS<sup>2</sup>)
- → Deployments
- \*Terrestrial segment
- → DIGITAL: 6 industrial & 26 national projects, CSA
- → Ongoing: procurement for QKD testing & evaluation
- → 2024+: CEF call for cross-border connections / OGS

#### \*Space segment

- → Eagle-1
- $\rightarrow$  SAGA








### Quantum Sensing

Quantum-secured networks and quantum internet



a map of various quantum sensing basic technologies and use cases. (cc) Olivier Ezratty, 2021-2023

## **Quantum Sensing Deployment**

#### Developing and deploying a network of Quantum Gravimeters in Europe (HORIZON, IA)

- Demonstrate the advantage of quantum gravimeters in innovative operational settings (onboarded, networks)
- Procure the gravimeters and operate them for real-world use cases
- Opening/closing dates TBC depending on adoption of amended WP





Al in support of Quantum-Enhanced Metabolic Magnetic Resonance Imaging Systems Digital Europe, SME support action

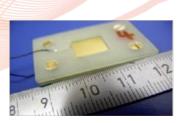
- Leverage sensing precision of quantum metabolic MRI for innovation in disease detection, diagnosis and treatment (e.g. of cancer or neurological diseases)
- Demonstrate the advantage of quantum technologies and AI together
- Support industrial innovation by becoming lead users of these technologies and opening up new markets
- Deployment in two phases (pre-clinical and clinical)



## Quantum Chips in the Chips Act

Chips for Europe Initiative – Overview

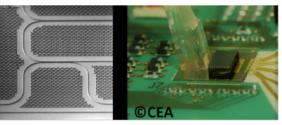



### High diversity of quantum chips

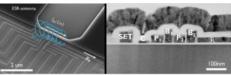


Computing: Superconducting qubits and parametric amplifier (for control and readout of qubits)




Communication: Polarization coding BB84 transmitter PIC



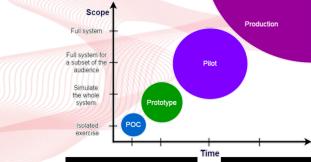

Sensing/Communication/Computing: Diamond growth, defect implantation (NV-Center), characterization

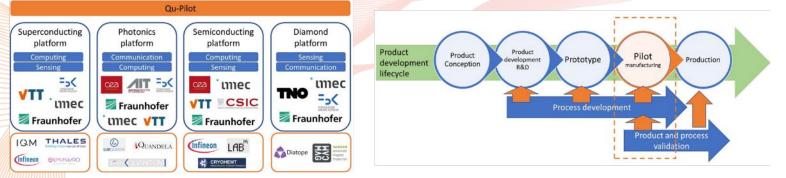


Computing/Sensing: (Left) Trapped ions Paul trap, (Right) Chip ion trap



Communication/Computing: (Left) SEM view of a silicon photonic circuit for entangled photon generation (Right) Packaging of photonic integrated circuits with fiber array and electronic chip on top





Computing: Silicon spin qubit cell with ESR manipulation unit: top view (left) and cross-section (right)



## Pilot lines & Testing Facilities

#### Quantum Flagship Projects







#### Engineering cycle of QT devices



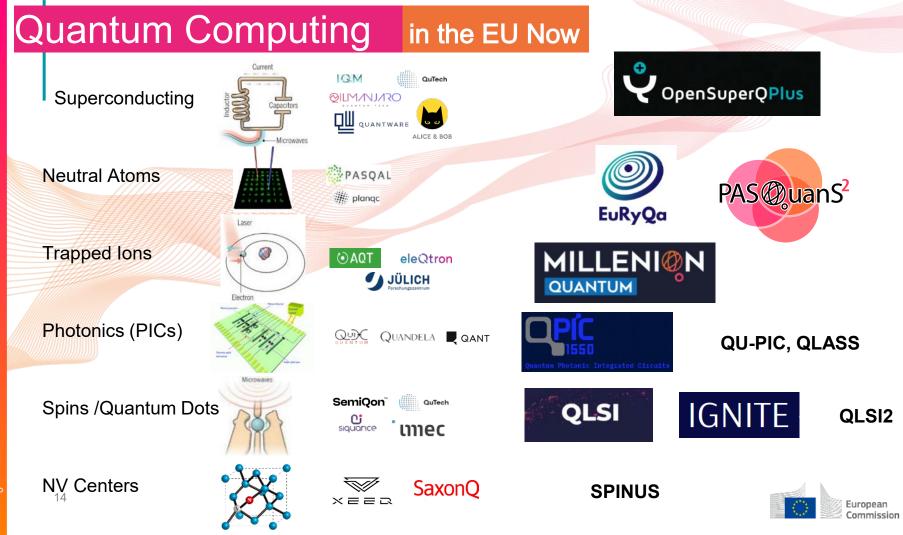
Measure to improve prototyping and design



## Quantum Chips Act

|   | Phase                    | Action                                                          | Target                 | Funding  | WP      | 2023 2024 2025 2026 2027 2028 2029 2030                                  |
|---|--------------------------|-----------------------------------------------------------------|------------------------|----------|---------|--------------------------------------------------------------------------|
|   |                          | QT Flagship R&D projects                                        | R&D community          | HE       |         | R&D - RIA, IA, FPAs, SGAs                                                |
|   |                          | Experimental Pilot Lines (high-flexibility, low-volume)         |                        | HE       |         | SGA1 - QU-PILOT/QU-TEST SGA2 - QU-PILOT/QU-TEST                          |
|   | R&D                      | - Superconducting platform (computing, sensing)                 | RTO + Industry Partner | HE       |         |                                                                          |
|   | R                        | - Photonics platform (communication, computing)                 | RTO + Industry Partner | HE       |         | First generation: 20 pre-<br>commercial use-cases (1+                    |
|   |                          | - Semiconductor platform (computing, sensing)                   | RTO + Industry Partner | HE       |         | company & 1+ platform) company & 1+ platform)                            |
|   |                          | - Diamond platform (sensing, communication)                     | RTO + Industry Partner | HE       |         |                                                                          |
|   | 10                       | Industrial (stability) Pilot Lines (stage 1)                    |                        |          | WP24    |                                                                          |
| _ | Z                        | Stability use-case 1 (PDK)                                      | RTO + Industry Partner | CA       |         | Stage 1: Production &                                                    |
|   |                          | Stability use-case 2 (PDK)                                      | RTO + Industry Partner | CA       |         | Stabilisation: PDKs,                                                     |
|   | PILOT (PRODUCTION) LINES | Stability Trapped Ions (PDK)                                    | RTO + Industry Partner | CA       |         | reliable characterization<br>tools (quality assurance) First generation: |
|   | nc                       |                                                                 |                        |          |         | mass/batch production                                                    |
| _ | 0                        | Industrial (stability) Pilot Lines (stage 2)                    |                        |          | WP26    |                                                                          |
| 1 | (PR                      | Stability use-case 4 (PDK)                                      | RTO + Industry Partner | CA       |         | Stage 2: Production &<br>Stabilisation: PDKs, reliable                   |
|   | Ь                        | Stability use-case 5 (PDK)                                      | RTO + Industry Partner | CA       |         | characterization tools                                                   |
|   | PIL                      | Stability use-case 6 (PDK)                                      | RTO + Industry Partner | CA       |         | (quality assurance)                                                      |
|   |                          |                                                                 |                        | <u> </u> | 14/02/4 |                                                                          |
|   | DESIGN                   | Basic design tools (for R&D at low TRL)                         | Licence acquisition    | CA       | WP24    | Virtual design platform                                                  |
| • |                          | Advanced design tools (commercial products)                     | Industry               | CA       | WP26    | Toolbox - Public procurement                                             |
|   |                          | Competence centres                                              |                        |          |         |                                                                          |
|   | COMP.<br>CENTRES         | - Training for QT/microelectronics design skills                | MS                     | CA       | WP24    | Coordination with MS                                                     |
|   | IM TN                    | <ul> <li>Support on design-to-manufacture transition</li> </ul> | MS                     | CA       | WP24    |                                                                          |
|   | 55                       | <ul> <li>Support on advanced design tools</li> </ul>            | MS                     | CA       | WP26    | Coordination with MS                                                     |
|   |                          | 12                                                              |                        |          |         | European -                                                               |

\* This implies the implementation of multiple use-cases, including materials (Al, Nb, Si, Ge, etc.) and ...?? Dates here are intended "starting of project", i.e. the launching of the calls is 1 year in advance In most cases 1.5 years is needed from setting up the pilot line and to actually "produce"




A IN PROGRES

## Quantum Computing and Simulation

Continue funding, diversifying and deploying





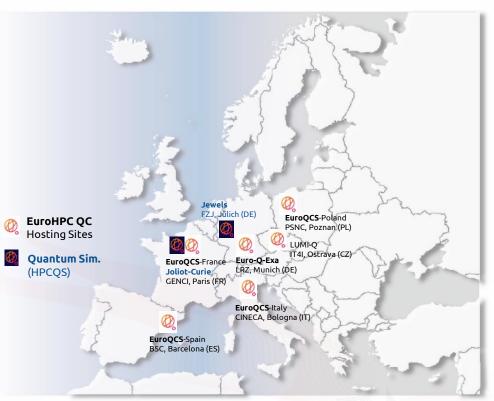
## EuroHPC EuroQCS





European

Interfacing Quantum Computers with HPC (HPC)

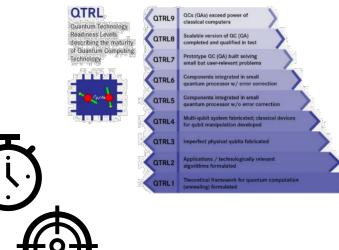

|                                                                                           | 2019 & 2020                                                                  | 2021 2022 2023 2024 2025 2026 2027                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HPC Infrastructure                                                                        | pre-exascale +<br>petascale HPC<br>systems                                   | Several petascale, pre-exascale systemsexascale and post-exascaleand exascale HPC systemsHPC systems                                                                                                                   |
| Quantum<br>Infrastructure                                                                 | quantum<br>simulators<br>interfacing with<br>HPC systems                     | 1st generation of quantum computers +<br>quantum simulators interfacing with HPC<br>systems2nd generation of quantum<br>computers + quantum<br>simulators                                                              |
| Hardware<br>connection<br>between classical<br>supercomputers<br>and quantum<br>computers | Use the quantum<br>computer as an<br>accelerator<br>for the<br>supercomputer | <ul> <li>Develop a software platform for seamless programming of the hybrid system</li> <li>Test and validate hybridisation in key applications</li> <li>New materials (batteries)</li> <li>Drug simulation</li> </ul> |

15

## EuroHPC QCS Infrastructure

- 2 Quantum Simulators (100+ Qubits)
  - Jülich: Jewels PASQAL QS (Germany)
  - GENCI: Joliot-Curie PASQAL QS (France)
- Both systems will be delivered in January 2024
- 6 Selected Hosting "Entities" (Consortia of 30 participating countries)
  - Euro-Q-Exa, superconducting Qubits (DE)
  - LUMI-Q, superconducting Qubits (CZ)
  - EuroQCS-Spain, superconducting Qubits (ES)
  - EuroQCS-Italy, neutral atom Qubits (IT)
  - EuroQCS-Poland, trapped ion Qubits (PL)
  - EuroQCS-France, photonic Qubits (FR)

#### Total investment > 140 Million EUR




Commission

16

## QC in Supercomputer Centres

 Quantum computers could perform certain calculations much faster or with more precision than classical computers due to their parallel processing capabilities.




#### Use less energy for certain

**computations** because they reduce the need for multiple iterations of an algorithm, unlike classical computers that might need billions of cycles for the same task.

European

Commission

## European Quantum Excellence Centres



in quantum computing and simulation
applications, for science and industry to:
1. Accelerate discovery of new quantumoriented applications and fostering of their knowledge and uptake

- 2. Develop technology-agnostic quantum applications for end-users
- 3. Integrate quantum/classical applications

European Quantum Excellence Centres (QECs) in applications for science and industry - European Commission (europa.eu)




## Quantum Declaration



# Signatories of the QUANTUM DECLARATION

Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Italy, Latvia, Luxembourg, the Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain and Sweden recognise the strategic importance of quantum technologies for the scientific and industrial competitiveness of the EU and commit to collaborating on the development of a world-class quantum technology ecosystem across Europe, with the ultimate aim of making Europe the 'quantum valley' of the world, the leading region globally for quantum excellence and innovation.

### The EU Strategy ... to make Europe the quantum valley of the world



## Benchmarking Quantum Computing and Simulation

#### EU Perspective



## QC Benchmarking Why is crucial?



| Aspect                                  | Description                                                                                                                                                 | Current Challenges                                                                                         | Helps on                                                                        | Examples                                                                                                                  |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Performance Evaluation                  | Provides objective metrics for comparing<br>quantum hardware and algorithms.<br>Validates claims of quantum advantage<br>through standardized measurements. | Developing universally accepted<br>benchmarks, variability in results<br>due to different quantum hardware | Objective comparison,                                                           | IBM Quantum Volume, Quantum<br>LINPACK, Atos, QuTech, <b>Compare to</b><br>existing systems                               |
| Progress Tracking                       | Tracks technological advancements<br>and encourages continuous improvement.                                                                                 | Continuous advancements<br>needed to maintain progress, high<br>costs of development                       | Identifies technological<br>milestones, fosters<br>innovation                   | Improvements in qubit fidelity,<br>coherence time advancements,<br>progress in Q Flagship projects                        |
| Resource Allocation                     | Guides investments and prioritizes research based on benchmark outcomes.                                                                                    | Efficient allocation of funds,<br>ensuring promising technologies<br>are not overlooked                    | Informed investment<br>decisions, prioritization of<br>impactful research       | Investments in QC technologies via<br>European Quantum Flagship                                                           |
| Standardization and<br>Interoperability | Promotes consistent and reliable<br>performance measurements. Ensures<br>compatibility across systems.                                                      | Lack of universal standards,<br>varying technical specifications<br>across different systems               | Consistency in evaluation,<br>interoperability between<br>different systems     | IEEE standards for quantum computing,<br>Quantum Flagship initiatives, <b>EU</b><br><b>Standardisation efforts</b> , ETSI |
| Market and Industry<br>Development      | Assesses commercial readiness and facilitates industry collaboration.                                                                                       | Balancing innovation with<br>commercial viability, scaling up<br>production                                | Encourages market growth,<br>promotes industry<br>collaboration                 | Commercial readiness assessments by firms like IQM and Pasqal. <b>Procurement via EuroHPC JU</b>                          |
| Technical Insights                      | Evaluates <b>algorithm efficiency and</b><br><b>identifies advancements</b> in error<br>correction.                                                         | Complexity in developing efficient<br>quantum algorithms, high error<br>rates                              | Guides software and<br>hardware co-design,<br>improves algorithm<br>performance | Evaluation of VQE for chemistry by<br>Jülich, QAOA for optimization by<br>European research consortia                     |
| Policy and Strategic<br>Planning        | Informs policy decisions with data-<br>driven insights and aids strategic<br>roadmaps for quantum initiatives.                                              | Ensuring policy keeps pace with technological advances, aligning with international standards              | Data-driven policy making<br>strategic alignment of<br>resources                | European Quantum Flagship's SRIA,<br>EU Chips Act integration, EuroHPC JU<br>procurement QC                               |

22

ZZ

## QC vs Classical Targeted Quantum Advantage?



Speed

by solving specific problems faster, leveraging superposition and entanglement, as seen with Shor's algorithm for factorization and Grover's algorithm for searches.

#### Precision

by offering higher precision in simulations, enhancing fields like materials science and pharmaceuticals, evident in accurate molecular modeling and linear equation solutions.

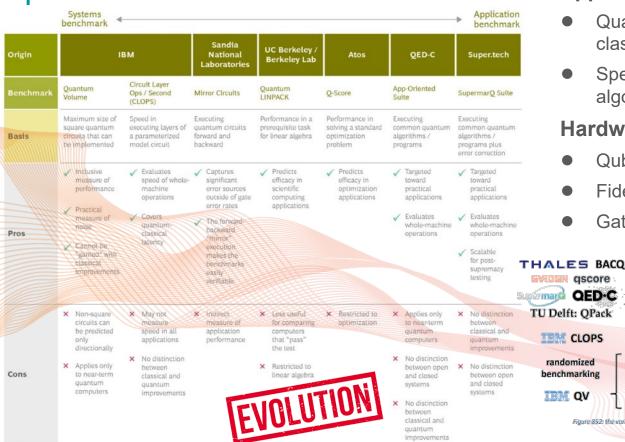
#### **Energy Efficient**

by performing large-scale computations more energy-efficiently, with quantum annealing reducing the energy footprint compared to classical methods, benefiting data centers.

#### **Scalability**

measures how quantum systems maintain efficiency as they grow, crucial for benchmarking their potential in realworld applications. Effective scalability supports larger datasets and complex computations

Commission


## HPC vs QC Benchmarking

|              | Aspect         | High-Performance Computing<br>(HPC)                               | Quantum Computing (QC)                                                                           |  |
|--------------|----------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|
| Objec        | ctive          | Measure performance of parallel computing systems.                | Measure performance of quantum processors and algorithms.                                        |  |
| Key N        | <b>Metrics</b> | FLOPS (Floating-point operations per second), bandwidth, latency. | Qubits, quantum volume, gate fidelity, coherence time.                                           |  |
| Comr<br>Benc | non<br>hmarks  | LINPACK, HPCG (High Performance<br>Conjugate Gradients).          | Quantum Volume, Q-score, random<br>circuit sampling, quantum supremacy<br>tests.                 |  |
| Chall        | enges          | Scalability, energy efficiency, communication overhead.           | Error rates, qubit connectivity, quantum<br>decoherence.                                         |  |
| Focu         | S              | Maximizing computational speed and efficiency.                    | Achieving and proving quantum advantage, error correction.                                       |  |
| Stand        | dardization    | Well-established standards and benchmarks.                        | Still developing, with diverse approaches and metrics.                                           |  |
| Hard<br>Depe | ware<br>ndency | Comparatively low (more standardized hardware).                   | High (due to different types of<br>quantum computers).                                           |  |
| Use C        | Cases          | Weather simulation, astrophysics, bioinformatics.                 | Quantum chemistry, optimization<br>problems, cryptography.                                       |  |
|              | -              |                                                                   | Increasingly broad but currently more<br>concentrated in academia and specific<br>industry labs. |  |
| Tooli        |                | Mature tools for performance analysis and optimization.           | <b>Emerging tools</b> , often specific to platforms like Qiskit, Cirq, etc.                      |  |

- Develop consistent and reliable performance **evaluation standards**.
- Create benchmarks for objective comparisons of different systems.
- Use benchmarks to identify and address system bottlenecks.
- Establish clear performance metrics to guide investments and market development.
- Foster international collaboration and competition through standardized benchmarks.
- Ensure benchmarks are **applicable to a wide range of use cases**.
- **Continuously update benchmarks** to keep pace with technological advancements.



## Types of QC Benchmarks



#### **App/Algorithmic Benchmarks**

- Quantum Speedup by comparing classical and quantum algorithms
- Specific Algorithms like Shor's algorithm, Grover's algorithm, etc.

#### Hardware/System Benchmarks

- **Qubit Count**
- Fidelity, error rates, coherence times
- Gate Speed



Ø

## Some EU QC Benchmarks

| f. | 71 |
|----|----|
|    |    |

| Origin          | Origin Benchmarks Basis                                                                                                                                                                     |                                                                                                                                                                        | Consortium                                                                      |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|
| Cirgin          | Dencilinarka                                                                                                                                                                                |                                                                                                                                                                        | Consolition                                                                     |  |
| Germany         | BenchQC                                                                                                                                                                                     | - Quantum machine learning, Physics simulation, combinatorial optimization                                                                                             | BMW Group, ML Reply,<br>Optware Quantinum,                                      |  |
| - ,             |                                                                                                                                                                                             | <ul> <li>Evaluation of both the classical and<br/>quantum parts of the computing.</li> </ul>                                                                           | Fraunhofer Inst. (IKS, IIS)                                                     |  |
| France          | France BACQ - Optimization, linear system solving,<br>quantum physics simulation, prime<br>factorization<br>- Aggregation and analysis of multiple<br>metrics (computational and energetic) |                                                                                                                                                                        | LNE, Thales, CEA, CNRS,<br>EVIDEN (ATOS), Teratec                               |  |
| The Netherlands | Netherlands TNO project - Q-Score methodology extension<br>(hardware and applications)                                                                                                      |                                                                                                                                                                        | TNO                                                                             |  |
| The Netherlands | QPack                                                                                                                                                                                       | <ul> <li>Quantum Approximate Optimization</li> <li>Algorithm (QAOA) and Variational quantum<br/>eigensolver (VQE)</li> <li>Aggregation of multiple metrics.</li> </ul> | TUDelft                                                                         |  |
| EVIDEN          | Q-Score                                                                                                                                                                                     | - Single score for the effectiveness of<br>solving standard problems (MAXCUT<br>optimization problem)                                                                  | EVIDEN (ATOS)                                                                   |  |
|                 |                                                                                                                                                                                             | - Supporting open testing and experimentation for quantum technologies in Europe.                                                                                      | 12 RTOs and National<br>Metrology Institutes from<br>NL, FI, BE, DE, AT, FR, IT |  |
| Europe          | Qu-Test                                                                                                                                                                                     | - Establishing measurement capabilities for<br>characterization and testing.                                                                                           | and 12 industrial companies                                                     |  |
| 26              |                                                                                                                                                                                             | - Developing harmonized measurement protocols for agreed key characteristics.                                                                                          |                                                                                 |  |

- Different National and Industry benchmarks
- Focuses on practical applications in industry and academia.
- Features methodologies for error correction and noise resilience.
- Includes real-world testing for algorithm efficiency.
- Helps companies evaluate quantum readiness.
- Plans to expand benchmarks to include diverse quantum models.



26

## QC Benchmarking Developing Benchmarks



- Toolkit (Catalogue) Benchmarking Model
  - Combines holistic and component-specific metrics to **choose as needed**.
  - From Applications, Algorithms, System level or Hardware

#### • Standardization of Metrics

- Common metrics and methodologies
- Unifies efforts, aligns strategies
- Inclusivity of Emerging Technologies (Evolving)
  - **Flexible** criteria for new technologies and HPC/QC integration
- Sustainable & Energy Efficient Benchmarks
  - Reflects global emphasis on sustainability
- Industry & Academic Collaboration

27

Ο

• Ensures robust, applicable, industry-relevant benchmarks

Encouraging joint industry-academic partnerships

European Commission

## QC Benchmarking Catalogue/Sets



European

28



**User-Friendly** 

Benchmark Selection Catalogue (living DB) of current benchmarks that can be consulted online, filter by criteria:

- Level (application, system, hardware)
- Only quantum/HPC integrated
- Use cases (material science, finance optimization...)
- Technologies (Agnostic, trapped ions, superconducting,...)
- Responsible of the benchmark
- Code (link to github) and how to run it (or adapt it)
- Benchmark Sets (Suites)
  - Select a set of predefine benchmarks/metrics based on the requirements from the user

## QC Benchmarking Toolkit/Catalogue



| Benchmark Nameg | Level       | Only<br>quantum/HPC<br>integrated | Use cases                                                                                         | Technologies  | Responsible of the benchmark                                           | Code (link to<br>github) and how to<br>run it (or adapt it) | Benchmark Set                                           |
|-----------------|-------------|-----------------------------------|---------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|
| Benchmark 1     | application | Only quantum                      | finance optimization                                                                              | photonic      | Atos (EU)                                                              | link                                                        | Financial Portfolio<br>Optimization                     |
| Benchmark 2     | system      | HPC integrated                    | logistics optimization                                                                            | topological   | Rigetti                                                                | link                                                        | Lo <mark>gisti</mark> cs and Supply<br>Chain Management |
| Benchmark 3     | hardware    | Only quantum                      | climate modeling                                                                                  | neutral atoms | Pasqal (EU)                                                            | link                                                        | Climate Modeling                                        |
| Benchmark 4     | application | HPC integrated                    | pharmaceuticals                                                                                   | color-center  | Oxford Quantum Circuits<br>(EU)                                        |                                                             | Pharmaceutical<br>Development                           |
| Benchmark 5     | application | HPC integrated                    | quantum machine learning,<br>physics simulation,<br>combinatorial optimization                    | Agnostic      | BMW Group, ML Reply<br>Optware Quantum,<br>Fraunhofer Inst. (IKS, IIS) |                                                             | Quantum Machine<br>Learning                             |
| Benchmark 6     | system      | Only quantum                      | optimization, linear system<br>solving, quantum physics<br>simulation, prime factorization        | Agnostic      | LNE, Thales, CEA, CNRS,<br>EVIDEN (ATOS), Teratec                      | <u>link</u>                                                 | Linear System Solving                                   |
| Benchmark 6     | hardware    | HPC integrated                    | hardware and applications                                                                         | Agnostic      | TNO                                                                    | link                                                        | Hardware and<br>Applications                            |
| Benchmark 7     | application | HPC integrated                    | Quantum Approximate<br>Optimization Algorithm (QAOA),<br>Variational Quantum<br>Eigensolver (VQE) | trapped ions  | TUDelft                                                                | link                                                        | Quantum Optimization                                    |
| Benchmark 8     | system      | Only quantum                      | solving standard problems<br>(MAXCUT optimization<br>problem)                                     | Agnostic      | EVIDEN (ATOS)                                                          | link                                                        | Standard Problem<br>Solving                             |

29

29

European Commission

## QC Benchmarking What Europe should do?





**Establish a Coordination Forum**: Create a **single forum to unify various European benchmarking initiatives**, facilitating collaboration and consistency.



**Promote Exchange and Collaboration**: Encourage interaction between **standardization** and benchmarking activities to harmonize efforts EU and internationally.



**Define a Support Programme**: Develop an EU-level program to **support R&D** with a cross-disciplinary approach, involving both academia and industry.



**Fund and Support Infrastructure**: Allocate funding and resources to build the necessary infrastructure for comprehensive benchmarking efforts.



**Facilitate Access to Quantum Machines**: Use EuroHPC to provide researchers access to quantum computers for benchmark development and testing, ensuring the creation of quantitative and objective benchmarks.



European



**Encourage Public-Private Partnerships**: Foster partnerships between public institutions and private companies to drive innovation and practical applications of benchmarks. **Facilitate Co-desing** (Apps/Users - HW)

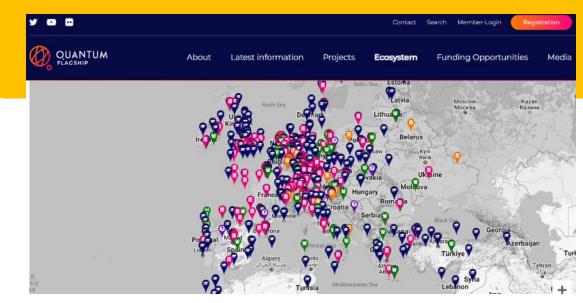


**Regular Review and Updates**: Implement a system for the regular review and updating of benchmarks to keep pace with evolving technological advancements.



### EQTC 2024 Lisbon 18-20 November

EQTC – European Quantum Technologies Conference 18-20 November 2024, Lisbon, Portugal






Highlights from EQTC 2023 | LinkedIn

31

## Thank you more info in qt.eu



© European Union 2023

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.



## **Backup Slides**



## Types QC Benchmarks Low level



| what and whom                              | what                                                                    | pros                                                                                                                                         | cons                                                                       | timing / adoption                                 |
|--------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------|
| IBM quantum volume                         | breath/depth computing capacity, 2^#qubits                              | simple qualifier of qubits<br>quality                                                                                                        | doesn't work in advantage<br>regime due to emulation<br>needs requirements | published in 2019<br>IBM, Quantinuum              |
| Cisco MBQC quantum<br>volume               | computing capacity for<br>MBQC CV photon qubits                         | adapted to photon qubit<br>using a different model than<br>circuit based models<br>to be adapted to direct<br>variable photons MBQC<br>model |                                                                            | proposed in 2022 by Cisco                         |
| IBM CLOPS                                  | circuit layers operations per seconds                                   | complements QV for speed                                                                                                                     | N/A                                                                        | announced in November<br>2021                     |
| cycle benchmarking                         | qubits entanglement<br>evaluation                                       | useful to benchmark qubits<br>quality feature                                                                                                |                                                                            | 2019, Canada, Denmark and<br>Austria universities |
| scalable benchmarks<br>for gate-based QC   | six low-level structured circuits tests                                 | tested 21 configurations from IBM, IonQ and Rigetti                                                                                          | low-level benchmark<br>not usage based                                     | published in 2021<br>QuSoft, Cambridge, Caltech   |
| PQF (photonic quality<br>factor)           | assess performance of linear<br>optics single photons<br>multimode QPUs | covers many NISQ photon<br>qubit implementations                                                                                             | limited to a specific photonic qubit configuration                         | published in 2022 by<br>Quandela                  |
| entanglement-based<br>volumetric benchmark | estimate size of maximum<br>entangled qubit state                       | entanglement is a key<br>feature of quantum<br>acceleration                                                                                  | narrow and not usage<br>oriented                                           | proposed in 2022 par DoE<br>Oak Ridge et al       |

Figure 844: low level benchmarking proposals. (cc) Olivier Ezratty, 2022.



🖉 quantum

34

European

## Types QC Benchmarks Application level



|                  | what and whom                                            | what                                                                | pros                                                                           | cons                                                  | timing / adoption                                                             |
|------------------|----------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------|
|                  | scalable benchmarks<br>for gate-based QC                 | six low-level structured circuits tests                             | tested 21 configurations from IBM, IonQ and Rigetti                            | low-level benchmark<br>not usage based                | published in 2021<br>QuSoft, Cambridge, Caltech                               |
| use cases        | QED-C supported<br>benchmark                             | set of low-level algorithms benchmarks                              | breadth of use cases                                                           | complicated visualization                             | published in 2021<br>QED-C, Princeton, HQS, QCI,<br>IonQ, D-Wave, Sandia Labs |
| multiple us      | IonQ<br>Algorithmic Qubits                               | min(#qubits, $\sqrt{#gates}$ )                                      | run on different use cases                                                     | a bit complicated                                     | published in 2020 and refined in 2022, IonQ                                   |
| Ĩ                | SupermarQ from<br>Super.tech                             | suite of applications<br>benchmark                                  | also handles error correction benchmarking                                     |                                                       | published in March 2022,<br>Intel and Amazon                                  |
| single use cases | Qpack by TU Delft                                        | three sets of problems (Max-<br>Cut, TSP, DSP)                      | measure differents metrics                                                     | Adoptions                                             | proposed in April 2022                                                        |
|                  | Atos Q-score                                             | maximum size of solvable<br>MAXCUT problem size                     | application need oriented<br>works in advantage regime<br>hardware independant | limited to MAXCUT<br>problems<br>marketing & adoption | published in 2020<br>Atos, be be expanded to<br>other algos                   |
|                  | DoE ORNL                                                 | chemical simulation                                                 | works on existing superconducting hardware                                     | limited to three 2-atom molecules simulations         | published in 2020<br>DoE                                                      |
|                  | Zapata benchmark for<br>fermionic quantum<br>simulations | one-dimensional Fermi<br>Hubbard model (FHM) VQE<br>running on NISQ | tested on Google Sycamore with its tunable couplers                            | narrow use case                                       | proposed in March 2020                                                        |

Figure 845: application level benchmarking proposals, either multiple or singe cases. (cc) Olivier Ezratty, 2022.

35

European Commission

## Types QC Benchmarks Other benchmarks



| what and whom                                   | what                                                                                                                   | pros                                                                                                  | cons                                                                  | timing / adoption                                                                                                          |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Unitary Fund Metriq                             | repository of benchmark<br>results                                                                                     | N/A N/A                                                                                               |                                                                       | announced in May 2022                                                                                                      |
| DARPA project                                   | SWAP (size-weight-<br>application-power)                                                                               | hardware-agnostic and<br>resource estimates N/A at this point                                         |                                                                       | awarded in 2022 to<br>Raytheon BBN                                                                                         |
| IEEE QC Perf Metrics<br>& Perf Benchmarking PAR | gate-based QC<br>benchmarking                                                                                          | ongoing standar                                                                                       | submission in Oct 2023<br>completion in Oct 2024                      |                                                                                                                            |
| Quantum Energy Initiative                       | QC energetics benchmarking<br>consolidated approach,<br>QGreen500 proposal<br>could consolidate cryogeny<br>benchmarks | methodology (MNR) to<br>optimize QC energetics,<br>first analysis done with<br>superconducting qubits | research and industry must<br>build coordination around<br>this goal  | joint research/industry<br>Quantum Energy Initiative<br>Iaunched in 2022.<br>IEEE Working Group P3329<br>Iaunched in 2023. |
| BACQ                                            | application and low-level<br>full-stack benchmarking<br>proposal.                                                      | covers many use cases and figures of merit. Includes energetics performance.                          | participants are so far only<br>from the France quantum<br>ecosystem. | project launched in 2023 by<br>CEA, CNRS, Thales, Teratec<br>and LNE.                                                      |

Figure 846: other benchmarks proposals. (cc) Olivier Ezratty, 2022-2023.

European Commission

#### Applications where Quantum Technologies could offer Advantages



Quantum Computing:

Drug discovery through molecular modeling, optimization problems in logistics and manufacturing, and cryptography.

Integrate quantum computers with classical computing systems like HPC supercomputers



Quantum Sensing and Metrology:

Enhanced precision in sensors for applications ranging from magnetic field detection to gravimeters, enabling advancements in areas such as **navigation**, **medical imaging**, and geological exploration.



**Quantum Communication:** 

Secure communication channels based on **quantum key distribution (QKD)** technologies, offering superior security against potential cyber threats. New services with **Quantum Internet.** 

