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Quantum Computing Requires Linearity 
and Unitarity
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Plasma Physics, CFD
• Nonlinear
• Nonunitary

Quantum algorithms need to linearize 
and embed into a larger Hilbert space 

to be able to simulate.

Quantum Computing
• Linear
• Unitary

MHD
Two-fluids
Vlasov

𝑑|𝜓⟩
𝑑𝑡

= −𝑖𝐻|𝜓⟩



Quantum encoding

■ Building blocks are qubits (not considering analog encodings in this talk).

■ Single-qubit state:

𝜓 = 𝑎 0 + 𝑏 1 = 𝑎
𝑏

■ Encoding of initial states into amplitudes and extraction of classical information from the 
amplitudes can lead to additional computational complexity.

■ Embedding into a larger Hilbert space (block encoding) also leads to added complexity and 
typically needs sparsity.
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Linear combination

Amplitudes can 
encode information.



From verifiable to intractable 
benchmarks

Can classical computers verify plasma physics simulations?
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Initial benchmarks Final benchmarks

• Solutions could be analytically known.
• Classical algorithms for efficient 

verification
• Quantum algorithm has only a 

polynomial speed-up

Verifiable benchmark plasma physics 
problems?

• Analytically or computationally intractable 
classically.

• Solutions not necessarily known.
• Can only be tested through experiments in the 

plasma physics.

Computationally expensive plasma physics 
problems



Solving Benchmark Problems for 
resource estimation
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Can we solve benchmark plasma 
physics problems on quantum 

computers?

Can we recreate linear Landau 
damping on quantum computers?

• Well-known result in plasma 
physics.

• Nontrivial to solve in general.
• Linearize to solve on quantum 

computers.



Linearized Vlasov equation
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Transform the linearized Vlasov-Poisson system to one that is easier 
to work with on a quantum computer.

Linear differential equation in the Hermite basis with a stable matrix.

Determine the spectral abscissa to extract the Landau damping rate.

Hermite transform

Quantum ODE solver



Collisional Vlasov-Poisson System

𝜕𝑓!
𝜕𝑡 + 𝒗 ⋅ ∇𝑓! +

𝑞!
𝑚!

𝑬 ⋅
𝜕𝑓!
𝜕𝒗 = 𝐶[𝑓!]

𝜖"∇ ⋅ 𝑬 = 5
!#$,&

𝑞!6𝑓!𝑑'𝒗

■ Solves for the time evolution of the distribution functions 𝑓! 𝒙, 𝒗, 𝑡  as well as the electric field 
𝑬 𝒙, 𝑡 .
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Distribution 
function ChargeMass Electric field Collision 

operator

Species 
(ion/electron)

Transform the linearized Vlasov-
Poisson system to a system that 
is easier to work with on a 
quantum computer.



From Nonlinear PDEs to Linear ODEs
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𝜕𝑓!
𝜕𝑡

+ 𝒗 ⋅ ∇𝑓! +
𝑞!
𝑚!

𝑬 ⋅
𝜕𝑓!
𝜕𝒗

= 𝐶[𝑓!]

1D in space and 
1D in velocity

Linearize about 
a Maxwellian 
background

Hermite 
Transform in 𝑣

Fourier 
transform in 𝑧

Rescale 
Variables

!𝐴 = −

0 𝑖𝑘
1 + 𝛼
2

0 0 0 0

𝑖𝑘
1 + 𝛼
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0 𝑖𝑘 0 0 0

0 𝑖𝑘 2𝜈 𝑖𝑘
3
2

0 0

0 0 ⋱ ⋱ ⋱ 0

0 0 0 𝑖𝑘
𝑚!"#$%

2
𝜈𝑚!"#$% 𝑖𝑘

𝑚!"#$% + 1
2

0 0 0 0 𝑖𝑘
𝑚!"#

2
𝜈𝑚!"#

𝑑1𝒈&
𝑑𝑡

= !𝐴1𝒈&

Solves for

𝑓(𝑧, 𝑣, 𝑡)

𝑔(𝑧, 𝑣, 𝑡)

𝑔"(𝑧, 𝑡)

𝑔",$(𝑡)

,𝑔",$(𝑡)

𝛼 captures the physics of the problem.
𝜈 is the collision frequency.

Transform the linearized Vlasov-
Poisson system to a system that 
is easier to work with on a 
quantum computer.



Collisionless Case 
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Collisionless Case

!𝐴 can be written as 𝑖𝐻, where 𝐻 is a Hermitian matrix (𝐻& = 𝐻).
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Schrodinger’s equation:
𝑑|𝜓⟩
𝑑𝑡

= −𝑖𝐻|𝜓⟩

𝜓 𝑡 = 𝑒/012|𝜓 0 ⟩

The equation becomes:
𝑑,𝒈3
𝑑𝑡

= 𝑖𝐻,𝒈3
,𝒈3 = 𝑒012,𝒈3(𝑡 = 0)

Can use Hamiltonian simulation algorithms to solve this problem. 

!𝐴 = −
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Collisional Case

■ 𝜈 ≠ 0, 𝐴 ≠ 𝑖𝐻.
– Cannot use Hamiltonian simulation.
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Vlasov equation
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1D in space and 
1D in velocity

Linearize about a 
Maxwellian 
background

Hermite 
Transform in 𝑣

Fourier transform 
in 𝑧

Rescale 
Variables

Vlasov-Poisson Equation

System of ODEs

Collisionless case 
Hamiltonian 
simulation

Nonlinear PDE

Nonlinear ODE

Infinite linear 
ODEs

Discretization, 
Transforms

Carleman 
Mapping

Collisional case 
Trotterization, 
Hamiltonian 

simulation and 
ODE Solvers

Can quantum computers speed up plasma physics simulations?

Linearized Landau 
damping

Simulate linear Landau damping 
on quantum computers.

Solve the nonlinear Vlasov equation 
on quantum computers.

Impact
Inertial confinementPlasma Physics

Other fields (e.g., 
galactic dynamics)

Collisional linearized 
Landau damping

Nonlinear Landau 
damping

Intermediate stage.

Physical complexity Benchmark stages Algorithms
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from Eq. (40) we find that the peak of |gM,k(T )| oc-
curs when M = (kT )2/2; this sets the minimum res-
olution required to capture the physics. Thus, in the
long simulation time limit, the ESP system size has bet-
ter dependence on T . However, this does not affect the
results of this paper. This is because the ESP system
size’s dependence on T and ϵ goes as Nv ∼ T log(1/ϵ)/ϵ,
whereas for the Hermite system size the dependence is
N ∼ T 2 log(1/ϵ). At first glance, it may seem that, by
fixing T , the Hermite system size would be quadratically
larger than the ESP system size. However, to achieve the
same precision ϵ for a simulation time T , the ESP sys-
tem would need to exponentially increase in system size.
Thus, overall, the Hermite system size is still exponen-
tially smaller than the ESP system size. It is important
to note that the system size’s dependence on T exists
only in the collisionless case. Upon adding collisions, the
number of Hermite moments required to capture the fine
structures is dictated by M ! ω/ν, which is independent
of T .

V. DISCUSSION AND CONCLUSION

In this paper we have demonstrated two main results.
First, using a Hermite representation of velocity space,
we can obtain a system that is exponentially smaller than
the one obtained via finite-difference discretization, as
proposed in the work of ESP [34], for the same error
ϵ. This implies that a classical implementation of the
Hermite approach will have similar performance to that
of ESP’s quantum algorithm. Second, a quantum algo-
rithm for the Hermite formulation can yield a quadratic
speedup compared to classical algorithms that solve the
same system of equations. An exponential speedup, how-
ever, does not seem possible with currently known meth-
ods due to the large norm of the matrices involved. Table
I summarizes the complexities of the algorithms discussed
in this paper.

Gate Complexity
Representation Classical Quantum

ESP [34] O(Nv/ϵ
θ) O(polylog(Nv)/ϵ)

Hermite O(N/ϵθ) O(
√
N log(N)/ϵ)

TABLE I. Gate complexities of the algorithms to estimate
Landau damping discussed in this paper. Here N is the Her-
mite system size, Nv is the ESP system size, ϵ is the absolute
error in amplitude estimation, and θ ≤ 1 is the order of the
classical ODE solver, with smaller values corresponding to
higher-order solvers. The simulation time T is a constant and
is omitted from the complexity analysis.

The problem analyzed in this paper is somewhat par-
ticular in that system size is conflated with the compu-
tation error. This is because the resolution required in
velocity (or Hermite) space is strictly a function only of
the error one wishes to achieve in the computation of the
Landau damping rate (physically, running the computa-

tion for longer times so that a longer-in-time decay stage
is obtained leads to more phase-mixing and thus finer-
scale structure in velocity space — or, correspondingly,
structure at higher Hermite moments). In more general
problems in plasma physics, there are minimal require-
ments imposed on velocity- and position-space grid sizes,
set by the need to resolve specific physics processes (for
example, one typically wishes to simulate a system of a
given size, L, but is forced to resolve kinetic-scale physics
happening at scales below, say, the ion Larmor radius, ρi.
Frequently, L/ρi ≫ 1, implying, therefore, a very large
number of grid points in position space before one can
even consider the error convergence with respect to sys-
tem size. A comparable situation in velocity space is one
where there is a super-thermal particle population, in ad-
dition to a Maxwellian bulk). Therefore, the scaling with
system size of quantum algorithms for plasma problems
is of intrinsic interest.
Our results also highlight the challenge of applying cur-

rently existing quantum algorithms to real-world prob-
lems. In applying quantum algorithms for Hamiltonian
simulation or differential equation solvers to the Vlasov
equation, we encounter matrix norms that scale as the
square-root of the system size. In addition, extracting
classical information such as the Landau damping pa-
rameter increases the complexity from O (log(1/ϵ)) to
O(1/ϵ).
We also note that it is possible to formulate the lin-

ear Vlasov equation as an eigenvalue problem and use
quantum phase estimation [54, 55] and quantum eigen-
value solvers [56–60] to determine the eigenvalue spec-
trum for the collisionless and collisional systems, respec-
tively. However, in the collisionless case, finding the
eigenvalue spectrum requires O(N) repetitions, and in
the collisional case, the complexity of such algorithms
depends on the condition number of the diagonalizing
matrix of the system, which, in this case, grows expo-
nentially with N . Furthermore, Landau damping cannot
be captured with an eigenvalue formulation, as it inher-
ently requires an initial-value problem approach.
Possible extensions of this work include generalizing

the system to higher dimensions, as well as extending
the quantum algorithm to the fully nonlinear Vlasov
equation. For the latter, in the regime of weak non-
linearity, it is possible that quantum approaches such
as those proposed by Liu et al. [21] could lead to a
speedup. Whether a quantum speedup can be obtained
in a strongly nonlinear regime remains an open and
important problem.
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Inertial confinement Fusion
VLASOV EQUATION IS IMPORTANT TO 

UNDERSTAND FOR INERTIAL 

CONFINEMENT FUSION

COLLISIONLESS ELECTROSTATIC, 

COLLISIONLESS ELECTROMAGNETIC

COLLISIONAL VLASOV EQUATIONS
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FDA Nozzle

FDA BENCHMARK NOZZLE FLOW

CORE PROBLEM IS A NAVIER-STOKES 

EQUATION

MAPPED TO A LATTICE BOLTZMANN 

EQUATION WITH LOW MACH NUMBER

REYNOLDS NUMBER CAN BE HIGH

Figure 1: Schematic representation of the FDA nozzle with all dimensions.

time covering 300 tc, where tc is the flow-through period
defined as,

tc =
Lc

uc
, (9)

where the characteristic speed uc and length Lc are set
to the velocity in the throat uthr and to the length of the
throat section, respectively. Only data from the second
half, i.e. 150�300 tc is used for the time-averaging process
to get average flow fields. The PIV data used for validation
and the 3-D model geometry are available from the FDA
official website1.

Flow conditions. Following experimental settings and bench-
mark requirements, the fluid was considered to be Newto-
nian, with a density of 1056 kg/m3 and a dynamic viscosity
of 3.5mPa s. The Reynolds number is computed as:

Re = Rethr =
⇢uthrdthr

µ
, (10)

where dthr is the throat diameter and uthr is defined as:

uthr =

✓
d0
dthr

◆2

u0. (11)

The average inlet velocity u0 is obtained dividing the vol-
ume flow rate by the inlet surface area S0 = ⇡d20/4. To
cover all flow regimes, the present study considers Re=500,
3500, and 6500. Based on critical pipe Reynolds numbers,
the first would fall in the laminar regime, the second in
the transitional, and the third in the low-level turbulent
regime, respectively.

Simulation details. The inlet boundary condition for the
velocity is prescribed in the form of a laminar parabolic
profile:

u(r) = 2u0

✓
1� 4

r2

d20

◆
. (12)

Constant pressure boundary conditions are implemented
at the outlet while no-slip boundary conditions are em-
ployed along the walls. The no-slip conditions are enforced
with the curved treatment of the bounce-back method [47]

1https://ncihub.org/wiki/FDA_CFD

while the outflow constant pressure is applied using the
non-equilibrium extrapolation approach [48].

The computational domain is tridimensional (D = 3)
and has a volume of 0.012⇥ 0.012⇥ 0.24m3. Simulations
were conducted with different grid resolutions, �r, listed in
table 2. The respective time-step sizes, �t, are defined by
fixing the maximum predicted convective Courant–Friedrichs–Lewy
(CFL) number in the domain:

CFL =
2uthr

�r/�t
, (13)

in turn leading to:

�t =
⇢dthr�rCFL

2µRethr
. (14)

For the analysis of the turbulent statistics, the velocity is
decomposed into a mean and a fluctuating part as:

u(x, t) = u(x) + u0(x, t), (15)

where the mean part u is defined by:

u(x) =
1

�t

Z t0+�t

t0

u(x, t)dt, (16)

t0 indicates the start of averaging and �t the period over
which it is done. Averaging the convective momentum
flux term in the NS equations using this decomposition,
one gets:

(u↵ + u0
↵)(u� + u0

�) = u↵u� + u0
↵u0

� , (17)

The last term of this equation appears in the Reynolds
stress tensor, defined as:

⇧0
↵� = ⇢u0

↵u0
� , (18)

where u0(x, t) and ⇢ indicate velocity fluctuations and fluid
density, respectively. The Reynolds stress tensor is sym-
metrical and consists of three normal stress and six shear
stress components. The normal stress can be calculated as
⇢u0

↵u
0
↵ where the term u0

↵u
0
↵ indicates the time-averaged

product of normal velocity fluctuations. Finally, the vis-
cous shear stress � is calculated, in this study, as below:

�↵� = ⇢⌫ (@�u↵ + @↵u�) . (19)

Four different resolutions will be considered in the study,
from R1 (coarsest) to R4 (finest), listed in table 2.
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Table 1: Summary of numerical studies associated to the FDA benchmark nozzle.

Study Re= 500 Re= 2000 Re= 3500 Re= 5000 Re= 6500 Numerical method Sub-grid model
Sanchez Abad et al. [25] X X X X Spectral elements (Nek5000) None

Fehn et al. [26] X X X X X High-order DG None
Bergersen et al. [27] X X X FEM (Oasis) None
Pewowaruk et al. [28] X X X FVM (Converge v2.4) None/RANS

Stewart et al. [29] X X X X X various various
Zmijanovic et al. [30] X FVM (YALES2BIO) �-model
Manchester et al. [31] X FVM (OpenFOAM) WALE
Bhushan et al. [32] X X X FVM (ANSYS Fluent) URANS

Janiga [33] X FVM (ANSYS Fluent) Smagorinsky
Chabannes et al. [34] X X X FEM (Feel++) None

White et al. [35] X regularized LBM (Palabos) None
Jain [5] X X raw moments MRT-LBM (Musubi) None

Present work X X X central Hermite MRT-LBM (ALBORZ) None

benchmark.
The need for reliable, reproducible benchmarks con-

fronted with experiments is urging in bio-medical applica-
tions where many variables may affect the results: temper-
ature, in-vivo vs. ex-vivo vs. in-vitro, biological species,
etc. The Food and Drug Administration (FDA), conscious
of this reality, suggested a series of challenging bench-
marks. The idealized medical nozzle device benchmark
has been used by several laboratories to conduct Particle
Image Velocimetry (PIV) measurements. Those measure-
ments provided reference standards to test the accuracy,
stability and efficacy for numerical solvers or alternative
experimental measurement techniques [24]. Experimental
data sets have been provided by independent laboratories
at different Reynolds numbers Re= 500, 2000, 3500, 5000,
and 6500, computed using the diameter of the throat (see
later fig. 1). These values of Reynolds numbers are typi-
cally encountered in medical devices involving flow recir-
culations, contractions, or expansions. This range of Re
covers very different flow regimes going from laminar (for
Re = 500 and 2000) to transitional (for Re = 3500 and
5000) to low-level turbulence (for Re = 6500). The cor-
responding PIV experiments have been carried out com-
pletely independently by three different groups. It must
be kept in mind that large inter-laboratory discrepancies
have been observed, in particular regarding the jet break-
down location for transitional and turbulent flows. Con-
versely, a very good agreement was observed for fully lam-
inar flows [29].

Many numerical studies of this benchmark nozzle have
been performed over the years, employing various numeri-
cal schemes ranging from Finite Element Method (FEM) [27,
34] to Finite Volume Method (FVM) [30, 33], as well as
a few using LBM [5, 35]. Table 1 summarizes the pub-
lished numerical studies of the FDA benchmark nozzle
with the associated Reynolds numbers, numerical meth-
ods and turbulence models employed. While many stud-
ies performed Direct Numerical Simulation (DNS) for the
lower Reynolds numbers, most simulations in the turbu-
lent regime were conducted using turbulence models like
Unsteady Reynolds-Averaged Navier-Stokes (URANS) [28,
32] or LES [31, 33, 36].

Few studies simulated the FDA nozzle benchmark us-
ing LBM; none of those has covered all experimental con-
ditions, more specifically the higher Reynolds numbers.
White and Chong [35] performed LBM simulations at low
Reynolds numbers (50 – 500) and studied the suitability
of different lattice types. More recently, Jain [5] stud-
ied the FDA nozzle at Re=2000 and 3500 with a simple
LBM scheme (raw moments MRT collision operator with
second order EDF and D3Q19 lattice) focusing on fully-
resolved simulations. Results were shown for the average
axial velocity, pressure profiles, and shear stress in dif-
ferent planes. In the present study, we consider a wider
range of Reynolds number, covering all flow regimes. The
computations are done with an advanced LBM model re-
lying on a central Hermite collision operator with a full
expansion of the discrete equilibrium, implemented in the
in-house LBM solver ALBORZ [37, 38, 39, 40]. The accu-
racy of this numerical model is assessed in under-resolved
direct numerical simulations at different resolutions, akin
to filtered simulations. A comprehensive comparison to
experimental data covering all relevant fields is presented.

The article is organized as follows: Section 2 is dedi-
cated to the numerical methods underlying our LBM model.
Section 2.2 details geometries and conditions used. The
obtained results are presented in Section 3 and discussed
in Section 4. Section 5 brings concluding lights on this
study.

2. Methods

2.1. Numerical model
The flow of interest here, involving a fluid with proper-

ties similar to water at room temperature and therefore a
sound speed of cs ⇡ 1450 m/s, and a maximum character-
istic speed of the order of 10m/s, falls into the low-Mach
regime, with Ma below 7⇥10�3. As such it can readily be
described with a low-Mach approximation to the Navier-
Stokes (NS) equations:

@t(⇢u↵) + @�(⇢u↵u�) + @�T↵� = 0, (1)

2

where the stress tensor T is:

T↵� = p�↵��µ

✓
@�u↵ + @↵u� �

2

D
@�u��↵�

◆
�⌘@�u��↵� ,

(2)
where p, µ, ⌘ and D are respectively the pressure, dy-
namic viscosity, bulk viscosity and number of dimensions
in space; �↵� denotes the Kronecker delta function.

Low-Mach flows can be dealt with in a variety of ways:
using compressible NS solvers would inevitably result in
rather small time-steps and excessive computational costs
due to the large discrepancy between the acoustic and
convective modes in terms of propagation speeds; or in-
compressible NS solvers with an infinite sound speed (i.e.
Ma = 0) which, while overcoming the stiffness stemming
from acoustics, introduce a non-local elliptic equation for
the pressure (Poisson equation). A third approach, in-
between these two, is a compressible solver with rescaled
acoustics (still guaranteeing separation of scales between
acoustics and hydrodynamics) with larger effective Mach
number allowing for a fully hyperbolic/parabolic system
of equations and larger time-steps compared to the fully
compressible formulation. The now well-known and widely
used LBM targets the latter approximation with a discrete
set of evolution equations for discrete probability distribu-
tion functions, fi [41]:

fi(x+ ci�t, t+ �t)� fi(x, t) =
�t

⌧̄
(f eq

i (⇢,u)� fi(x, t)) ,

(3)
where ci are discrete particle velocities, ⌧̄ the relaxation
time, �t the time-step size and f eq

i the discrete equilib-
rium distribution function. This system of equations is
readily obtained by integrating the discrete-in-phase-space
Boltzmann equation with the Bhatnagar, Gross and Krook
(BGK) collision operator along its characteristics [42, 43].
The discrete-in-phase-space Boltzmann equation is obtained
by projecting the continuous space of particle velocities of
dimension D onto a set of ortho-normal base functions,
e.g, Hermite polynomials, and keeping lower-order contri-
butions needed to recover the correct hydrodynamic limit
(i.e. NS level dynamics) [44]. As such the discrete equi-
librium function is a truncated Hermite expansion of the
Maxwell-Boltzmann equilibrium function [44]:

f eq
i (⇢,u) =

NX

n=0

wi

i!✓i0
aeq
n (⇢,u) : Hn(ci), (4)

where for a third-order quadrature the stencil reference
temperature is ✓0 = �r2/3�t2, Hn(ci) and aeq

n (⇢,u) are
the Hermite polynomials and corresponding equilibrium
coefficients, while the weights wi and the set of discrete
particle velocities ci are obtained from a Gauss-Hermite
quadrature.

While most of the initial models and simulations relied
on second order expansion of the equilibrium distribution,
it has since been observed that this leads to Galilean in-
variance issues in the shear components of the stress ten-

sor. This problem can readily be removed by adding third-
order components to the discrete equilibrium [45]. The
same issue exists for normal components of the viscous
tensor. However, this problem can only be removed via
correction terms [13, 45, 46]. The present study targets
the incompressible regime where bulk viscosity effects are
negligible. Therefore, this correction is not necessary and
will not be considered.

The relaxation time appearing in the evolution equa-
tion is tied to the local dynamic viscosity as:

⌧̄ =
µ

⇢✓0
+

�t

2
. (5)

The original model, as described in eq. (3) is referred to
as the single-relaxation time realization of the BGK colli-
sion operator, which has a limited range of stability. To
enhance the domain of stability and have a more robust
scheme allowing for under-resolved simulations we use a
multiple relaxation time realization based on central Her-
mite polynomials. Then, eq. (3) changes into:
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its inverse defined as:
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and S is the diagonal tensor of relaxation coefficients. The
central Hermite moments fM are defined as [4, 39]:
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While relaxation times appearing in S can be tuned in-
dividually for each moment, here all ghost relaxations are
set to one, as this both minimizes computational costs and
is very close to the optimal linear stability manifold in the
space of ghost relaxation times [39]. For more details on
the transforms and moments readers are referred to [4, 46].

2.2. Numerical simulations
Cases description. A cross-sectional view of the idealized
medical device, subject of the FDA nozzle benchmark is
shown in Figure 1. The geometry is composed of an ax-
isymmetric nozzle with a convergent section on the flow in-
let extremity, a constant throat section in the middle and
a sudden expansion section toward the end. To eliminate
a possible numerical effect of inlet and outlet boundary
conditions, the nozzle has been extended by 0.052m and
0.02m at both ends, respectively. The final length of the
nozzle is 0.24m. To validate the numerical results, data
is collected from both the horizontal center-line and eight
distinct planes located at different coordinates along the
horizontal x-axis. Figure 1 shows the locations of these
planes. The simulations are run over a total period of
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where p, µ, ⌘ and D are respectively the pressure, dy-
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in space; �↵� denotes the Kronecker delta function.

Low-Mach flows can be dealt with in a variety of ways:
using compressible NS solvers would inevitably result in
rather small time-steps and excessive computational costs
due to the large discrepancy between the acoustic and
convective modes in terms of propagation speeds; or in-
compressible NS solvers with an infinite sound speed (i.e.
Ma = 0) which, while overcoming the stiffness stemming
from acoustics, introduce a non-local elliptic equation for
the pressure (Poisson equation). A third approach, in-
between these two, is a compressible solver with rescaled
acoustics (still guaranteeing separation of scales between
acoustics and hydrodynamics) with larger effective Mach
number allowing for a fully hyperbolic/parabolic system
of equations and larger time-steps compared to the fully
compressible formulation. The now well-known and widely
used LBM targets the latter approximation with a discrete
set of evolution equations for discrete probability distribu-
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tensor. However, this problem can only be removed via
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FIG. 1. Illustration of the complexity of solving Navier–Stokes equations using quantum algorithms: (a) Reynolds number-
determined strongly nonlinear Navier–Stokes equations; (b) Mach number-determined weak nonlinear lattice Boltzmann form
of Navier–Stokes equations; (c) Carleman-linearized lattice Boltzmann equation; (d) exponential quantum advantage in solving
the Carleman-linearized lattice Boltzmann equation.
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of C, the dissipation parameter g, the evolution time T , the sparsity s, the norm of the initial state �, and the desired
solution error ✏. If any of kCk, J , g, T , or s has implicit polynomial (or worse) dependence on N , or if � or ✏ has
exponential (or worse) dependence on N , the headline exponential advantage is negated.

When the underlying system of equations is nonlinear, the requirements for e�cient solution become more stringent
still. There is no known quantum algorithm that is directly applicable to nonlinear di↵erential equations; instead, the
nonlinear system first needs to be approximated by a (larger) system of linear equations [41, 42]. Whether the quantum
algorithm is still e�cient after this approximation depends on the degree of nonlinearity [42]. The nonlinearity of
NSE is characterized by the Reynolds number (see Methods). Quantum algorithms are unable to simulate NSE [42]
with Re �

p
2, which is far from the values in relevant cases (e.g., atmospheric turbulence [43, 44] with Re ⇡ 107).

We will now analyze whether the Boltzmann form of fluid dynamics, after linearization, can take advantage of
quantum algorithms’ e�cient handling of large N without violating these algorithms’ strict requirements. Our aim in
this manuscript is not quantum algorithm development but, rather, showing that turbulent fluid dynamics is tractable
with existing quantum algorithms, provided the Boltzmann formulation, rather than the NSE formulation, is used.

METHODS

Navier–Stokes equations and their lattice Boltzmann form

The Navier–Stokes equations (NSE) governing fluid dynamics read

@u

@t
+ u · (ru) = �rp

⇢
+ ⌫r2u+ F, (4)

@⇢

@t
+r · (⇢u) = 0, (5)

where u is the flow velocity, p is the pressure, ⇢ is the fluid density, ⌫ is the kinematic viscosity, and F is the
forcing term. The nonlinearity of Eq. (4) is exhibited in u · (ru). This term and the viscosity term ⌫r2u together
determine the multiscale property of a turbulent flow characterized by the Reynolds number Re = u · (ru)/(⌫r2u).
Flow systems in nature are often characterized by high Re (e.g., Re ⇡ 107 for atmospheric flows and Re ⇡ 1021 for
astrophysical flows), which are intractable to simulate using classical computers, as the best-case computational cost
scales as Re3 according to the Kolmogorov theory[15]. The compressibility of the flow is characterized by the Mach
number Ma = |u|/cs with cs being the speed of sound.

We solve the lattice Boltzmann form of the NSE to reduce the nonlinearity from Re-determined u · (ru) to Ma-
determined u

2 = u ·u. The discrete-velocity Boltzmann form of Eq. (4) with Bhatnagar–Gross–Krook (BGK) collision
[45] leads to:

@f̃m

@ t̃
+ ẽm · r̃f̃m = �1
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⇣
f̃m � f̃

eq
m

⌘
, m 2 1, . . . , Q, (6)

where f̃m(x̃, t̃) is the particle velocity distribution function describing the probability density of finding a particle
around position x̃ at time t̃ with unit discrete velocity ẽm, and Q is the number of discrete velocities [35]. If a
spatial discretization uses n grid points, the dimensionality of f is n ⇥ Q; as we will discuss below, Q is a fixed,
small number (Q  27 in widespread practice), whereas simulations with large domains or fine resolutions are often
desirable, resulting in n � 1. In our complexity analysis, we therefore treat Q as a constant and n as a parameter of
the problem whose e↵ects in the large-n limit are of particular practical interest. In one, two, and three dimensions,
the square or cubic lattices D1Q3, D2Q9, and D3Q27 are in widespread use [35]. f̃ eq

m
is the local Maxwell equilibrium

that f̃m(x, t) relaxes to at a relaxation time of ⌧̃ . r̃ represents the spatial gradient in the x̃, ỹ, and z̃ directions.
By using a reference density ⇢r and speed er, characteristic macroscopic length scale L, and particle collision tc, one
obtains the nondimensional form of Eq. (6), termed the lattice Boltzmann equation (LBE):
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small number (Q  27 in widespread practice), whereas simulations with large domains or fine resolutions are often
desirable, resulting in n � 1. In our complexity analysis, we therefore treat Q as a constant and n as a parameter of
the problem whose e↵ects in the large-n limit are of particular practical interest. In one, two, and three dimensions,
the square or cubic lattices D1Q3, D2Q9, and D3Q27 are in widespread use [35]. f̃ eq

m
is the local Maxwell equilibrium

that f̃m(x, t) relaxes to at a relaxation time of ⌧̃ . r̃ represents the spatial gradient in the x̃, ỹ, and z̃ directions.
By using a reference density ⇢r and speed er, characteristic macroscopic length scale L, and particle collision tc, one
obtains the nondimensional form of Eq. (6), termed the lattice Boltzmann equation (LBE):

@tfm + em ·rfm = � 1

⌧ Kn
(fm � f

eq
m
), m = 1, . . . , Q, (7)



Summary

■ Plasma physics is difficult to simulate.
– Time-and length-scales have an extraordinary range.
– Need massive amounts of computational resources.

■ Limits the rate at which our understanding of the subject expands.

■ Many problems in CFD need a large Reynolds number.

■ This translates to large nonlinearities in differential equations.

■ It would be useful to increase the applicability of quantum algorithms such as quantum Carleman 
linearization more into the nonlinear regime.

■ Also need to find good lower bounds to problems in CFD.
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