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Quantum Computing Requires Linearity
and Unitarity

Plasma Physics, CFD Quantum Computing
* Nonlinear e Linear
* Nonunitary * Unitary
MHD |1/J)
Two-fluids = —iH[y)
dt
Vlasov

Quantum algorithms need to linearize
and embed into a larger Hilbert space
to be able to simulate.




Quantum encoding

m Building blocks are qubits (not considering analog encodings in this talk).

m Single-qubit state:
Linear combination
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encode information.

Encoding of initial states into amplitudes and extraction of classical information from the
amplitudes can lead to additional computational complexity.

Embedding into a larger Hilbert space (block encoding) also leads to added complexity and
typically needs sparsity.



From verifiable to intractable
benchmarks

Can classical computers verify plasma physics simulations?

»>

« Solutions could be analytically known. * Analytically or computationally intractable

« Classical algorithms for efficient classically.
verification * Solutions not necessarily known.

« Quantum algorithm has only a * Can only be tested through experiments in the
polynomial speed-up plasma physics.
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Initial benchmarks Final benchmarks




Solving Benchmark Problems for
resource estimation o)

slower particles

Can we solve benchmark plasma
physics problems on quantum
computers?
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Can we recreate linear Landau

_ Velocity v/m-s™!
damping on quantum computers?

5Lamda.u Damping Classical Simulation, o = 1, v = 0.01, 300 Hermite Moments

Well-known result in plasma
physics.
Nontrivial to solve in general.

Linearize to solve on quantum
computers.
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Linearized Vlasov equation

Hermite transform

Quantum ODE solver




Collisional Vlasov-Poisson System

Distribution Species
function (ion/electron) Mass Charge Electric field

GJE_T A gs T df T

Collision

m Solves for the time evolution of the distribution functions f,(x, v, t) as well as the electric field
E(x,t).



From Nonlinear PDEs to Linear ODEs

0fs as . Ofs
9 TV Vst gy = CIA
Solves for
f(z,v,1)
Linearize about
O cu (2 v, t)
background
Hermite
Z,t
Transform in v gm(2,1)
Fourier
transform in z Im k(1)
Rescale gm,k ( t)
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o captures the physics of the problem.
is the collision frequency.




Collisionless Case
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Collisionless Case -

=)
=
. =
8 ml
8
&
- o
=)

(=)
5;

(=) (=) (=] (=]

—

o o o =
o

(=)
(=]
-
=~
o

A can be written as iH, where H is a Hermitian matrix (HT = H).

The equation becomes: Schrodinger’s equation:
dg ~ aly)
—— —iH —
a % < > I tH ()
Gk =e"'gr(t=0) <« > [Y(t)) = e | 1p(0))

Can use Hamiltonian simulation algorithms to solve this problem.
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Collisional Case

m v+0, A +#IiH.

— Cannot use Hamiltonian simulation.
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Vlasov equation [

Impact

Plasma Physics

Can gquantum computers speed up plasma physics simulations?
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Other fields (e.g.,
galactic dynamics)

Inertial confinement [

I_l_l—l—l

Simulate linear Landau damping
on quantum computers.

Vlasov-Poisson Equation

Linearize about a
Maxwellian
background

Hermite
Transform in v
Fourier transform
inz
Rescale
VLS

System of ODEs =

Physical complexity

Collisionless case
Hamiltonian
simulation

Collisional case
Trotterization,

Hamiltonian
simulation and
ODE Solvers

Benchmark stages

Intermediate stage.

Nonlinear PDE

Discretization,
Transforms

Nonlinear ODE

Carleman
Mapping

Infinite linear

ODEs

Algorithms

Solve the nonlinear Vlasov equation

on quantum computers.

Gate Complexity
Representation| Classical Quantum

ESP [34] O(N, /€”) | O(polylog(N,)/¢)
Hermite O(N/e%) | O(v/'Nlog(N)/e)

TABLE 1. Gate complexities of the algorithms to estimate
Landau damping discussed in this paper. Here N is the Her-
mite system size, IV, is the ESP system size, € is the absolute
error in amplitude estimation, and € < 1 is the order of the
classical ODE solver, with smaller values corresponding to
higher-order solvers. The simulation time I" is a constant and
is omitted from the complexity analysis.
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lnertial confinement Fusion

8f(fg,tv,t) +v-Vuf(z,v,t) — E(z,t) - Vyf(z,v,t) =0

— A¢(x,t) =1—p(x,t) , E(x,t) = —Vo(x,t)

VLASOV EQUATION IS IMPORTANT TO
UNDERSTAND FOR INERTIAL
CONFINEMENT FUSION

I ,0
COLLISIONLESS ELECTROSTATIC, VeE==,p= [/ (z,0,).
COLLISIONLESS ELECTROMAGNETIC Ock 1 27ki
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FDA Nozzle

o dy-l2em 2.2685m  4em
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FDA BENCHMARK NOZZLE FLOW 1 1T | ]
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EQUATION X[m]
MAPPED TO A LATTICE BOLTZMANN Ot(pua) + Op(puaug) + 0sTap = 0,
9
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eq . i e . ' i ;
fit (pyu) = ; 107 a®d(p,u) : H,(c;) Hermite basis

Comput Methods Programs Biomed (2022)




Quantum lattice

BECOMES NAVIER-STOKES IN THE
LOW MACH NUMBER
APPROXIMATION

THE COMPLEXITY OF THE
ALGORITHM DEPENDS ON THE
KNUDSEN NUMBER

KN = O(MACH/REYNOLDS)

CAN GO TO HIGHER REYNOLDS
NUMBERS THAN CLASSICAL
COMPUTERS IN THIS REGIME.

RECENT WORK (ARXIV:2303:16550)
HAS LOOKED AT USING QUANTUM
CARLEMAN LINEARIZATION (PNAS
118, E2026805118 (2021)).
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Navier—Stokes
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M u vy = - YP L vPuF
¢ p
u- (Vu)/(»V2u) ~ Re > 1

N = O(n)

Reynolds-determined
strong nonlinearity

Lattice Boltzmann

% +e- a%f =Q(f)
[(ef)/{f)] ~ O(Ma) < 1
N = 0(nQ)
Mach-determined
\ weak nonlinearity

\
\ Linearizing
N (c)

Carleman Linearized LBE
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Linearized system
with many degrees

of freedom suitable
for quantum algorithm

complexity ~ O(logN)

(Vu) = —% +vV*u+F
dp
a +V-(pu) =0,

From arxiv:
2303:16550



Summary

m Plasma physics is difficult to simulate.
- Time-and length-scales have an extraordinary range.
- Need massive amounts of computational resources.

m Limits the rate at which our understanding of the subject expands.
m Many problems in CFD need a large Reynolds number.
m This translates to large nonlinearities in differential equations.

m It would be useful to increase the applicability of quantum algorithms such as quantum Carleman
linearization more into the nonlinear regime.

m Also need to find good lower bounds to problems in CFD.
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