U.S. Department of Homeland Security

SCIENCE AND TECHNOLOGY DIRECTORATE

The Department of Homeland Security: Developing a Quantum State of Mind

Dr. Amy Henninger Senior Advisor for Advanced Computing DHS S&T

5 June 2023

Ο

Introduction to DHS S&T

https://www.dhs.gov/medialibrary/assets/videos/36283

Science advisor to the Secretary and the research and development arm for DHS.

Quantum Information Sciences / Quantum Computing at DHS S&T

 Quantum Computing Ouantum Chemistry Ouantum Simulation Simulation Chemistry Annealing Machine Learning Biology Personalized Medicine Quantum Algorithms / Search **Technologies** Factorization Ouantum Machine Maths Communication Quantum Sensing Ouantum Quantum Networking / Algorithms Ouantum Communications **Machine Learning**

> https://www.alumni.ox.ac.uk/quad/article/quantum-computing-oxford Credit: Pete Shadbolt & Jeremy O'Brien

Executive Infographic

Unclassified Use Cases Only

Operational Needs Categories Maintain Cybersecurity Against Malicious Threats **Ensure Maritime Security in Polar Regions** Prioritize and Investigate Child Exploitation Materials Use cases Screen Passengers and Accessible Property at Airport Security Checkpoints FOUO/LES Safeguard Borders and Ports Against Intrusion

ges and prospects advancements in	Med High			 (20) Precision timing for navigation (3) Quantum Diamond Microscope – sensing HW trojans in chips (19) Coast Guard HF optimization sensing/receiving comms (21) PNT enhancement using atomic clocks 	(6) Post Quantum Cryptography
Potential advanta of technological	Low	(18) Simulate new materials(5) Database searches(17) Optimization	(17) Schedule optimization (e.g., Coast Guard cutters)	(22) Navigation in GPS denied areas	
		Quantum Computing, gate-based	Quantum Annealing Quantum Te	Quantum Sensing chnology	Conventional solution to update Crypto

are

Quantum Computing: Technology Advancement vs Mission Value

What We Watch

- Identifying useful problems / Problem dependent advantage Still unclear how problem-dependent quantum speedup will be
- Reducing noise Processors are getting larger, but noise continues to pose challenges for observing definitive quantum advantage
- Error correction
 - Processor size Systems are currently too small to solve classically intractable problems
 - Repeatability and Stability devices are not stable; difficult to reproduce even classically solvable results
- Scaling components current size to power ratio is not sustainable. Improvements must be made in miniaturizing and scaling components.
- Connectivity extra challenges, such as supercooled cable or a complex network of lasers
 And look for metrics to computize these things.

[SCIENCE AND TECHNOLOGY DIRECTORATE]

Engage with us:

SandT.Innovation@hq.dhs.gov

@dhsscitech

STQuantum@hq.dhs.gov

Back Up Slides

Quantum Volume of Modern Systems vs Required Metrics for Implementation of Important Quantum Algorithms

Improvements are Needed in Both Size and Precision to Enable Useful Applications of Quantum Computers

