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INTRO Comparing discrete optimisation solvers
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Source: M. Suriya - Machine learning and quantum computing for 5G/6G communication networks - A survey
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INTRO Comparing discrete optimisation solvers

NATO ORGANISATION

The NATO Science & Technology
Organization (STO) is a NATO
subsidiary body to the North
Atlantic Council (NAC).
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NATO Comparing discrete optimisation solvers

RTG NATO SET-IST-339 > GOALS

Investigations of Military Applications of Quantum Computing

ACTIVITIES:

Overview of state
of the art

GOALS:

Improved Data
Analysis and
Intelligence

Analysis

Prototype
Development of = Implementations

and Experimental
Demonstrations

Novel Quantum
Algorithms

Demonstration of

Enhanced Military ""o Quantum
Decision-Making Speedup and
Benefits
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NATO

RTG NATO SET-IST-339 > PROJECT

Algorithm Development

TNO

State of the
art
monitoring

Performance
& metrics

Generic Implementation &
hardware connections

MoD France

Use Case development

Multiverse Fraunhofer Thales

Dissemination / education / outreach

MoD France




NATO Comparing discrete optimisation solvers

Performance & Metrics Overview

 Goals:
« Standardize NATO QC benchmarks.

« Provide robust and adaptable QC benchmarks.

 Description:
« Overview of performance metrics
« Survey and adapt QC benchmarks for NATO military applications
« Develop user-oriented multi-criteria benchmark.
« Create hardware-agnostic compiler benchmark.
« Run benchmarks on QPUs.

« Recommend standardized benchmarks for NATO QC efforts.
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METRICS Comparing discrete optimisation solvers

Comparing solvers for combinatorial optimisation
problems




METRICS Comparing discrete optimisation solvers

CATEGORIES OF SOLVERS

Branch and Bound Exact -
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Based on: Jose Caceres-Cruz et al. “Rich vehicle routing problem: Survey”. In: ACM Computing Surveys (CSUR) 47.2 (2014), pp. 1-28.



METRICS Comparing discrete optimisation solvers

Comparison

« Solution quality
* Running time
* Preparation time

« Design time

______________|Solution _Design __|Preparation |Running __
++ ++ -

Exact +++

Approximation ++ - +

Metaheuristics 0 + = 0
Problem Specific heuristics + - + ++
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METRICS Comparing discrete optimisation solvers
®
S-T diagram

« For given problem instance (size)

« In practice:
« Data quality / completeness low
« Interaction needed
« How often do you solve this?

« How useful is learning/parameter tuning?
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Source: Phillipson, Frank. "Searching for Optimisation." (2022).
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Comparing discrete optimisation solvers

CATEGORIES OF SOLVERS (with QUANTUM)

Exact -

v

Optimisation
Methods

._‘

Methods ——

Branch and X

v

Constraint
»-Programming

—a Dynamic
Programming

il
A", IDA*

Approximation
» Algorithms

Approximate —

Methods

& Heuristic
Algorithms

—

Branch and Bound
-

Grover’s algorithm

~®™Branch and Price

§ .
Branch and Cut

Q Annealing / QAOA

Metaheuristics

F .
Problem - specific
heuristics

m innovation
for life

Based on: Jose Caceres-Cruz et al. “Rich vehicle routing problem: Survey”. In: ACM Computing Surveys (CSUR) 47.2 (2014), pp. 1-28.
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Q-Score
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Source: Matrtiel, Simon, Thomas Ayral, and Cyril Allouche. "Benchmarking quantum coprocessors in an application-centric, hardware-agnostic, and scalable way." IEEE Transactions on Quantum Engineering 2 (2021): 1-11.




METRICS Comparing discrete optimisation solvers

Q-Score (time dependent)

Average beta per problem instance Average time per problem instance
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Source: Van der Schoot et al. "Q-score Max-Clique: The First Quantum Metric Evaluation on Multiple Computational Paradigms." arXiv preprint arXiv:2302.00639 (2023).



METRICS

Beta

Time (in s)
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Q-Score (time dependent)

Average beta per problem instance
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METRICS Comparing discrete optimisation solvers

Attention points

What kind of algorithm?
What kind of instances?

e Random

« Random within boundaries

 Real use case

Guarantees?

Intermediate results accessible?

Sharp upperbound?

How much work does it take in which phase?




METRICS Comparing discrete optimisation solvers

Recommendations

Add time...

Define clearly what times are included.

Define clearly what bounds are taken (“naive randomized algorithm and an exact solver”).

Avoid (too much) interpretations possibilities.
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