
Joseph Emerson

Professor of Applied Math, Institute of Quantum Computing, University of Waterloo

Director of Quantum Strategy, Quantum Engineering Solutions, Keysight

I. Intro and Background:
• Randomized error diagnostics vs system performance: closing the gap
• Role of randomized compiling

II. Cycle-level Benchmarking
• Cycle benchmarking and cycle error reconstruction

• Learning the process fidelity and Pauli error rates under parallel instruction sets across n-qubits for large n

III. System-level Benchmarking
• Performance guarantee for applications
• A scalable quantum volume benchmark?

2

The Problem of Errors: they are here to stay

• NISQ: Near-term noisy/imperfect qubits: requires error assessment & error
suppression & error mitigation

• Fault-tolerance: Long-term error-corrected logical qubits: “better but still noisy’’

Myth: FT-QEC will (eventually) deliver essentially “error-free” logical qubits

• Quantum computers will always require error assessment, error suppression and solution
validation, even at logical level

• Fault-tolerance only guarantees correcting subset of “good’ errors.

• Physically realistic error models are always a mix of “good” and ”bad” errors

Mind the Gap!

• Application-based benchmarks have very limited usefulness:
• They are not generally useful to predict any thing other than the very specific algorithm they ran
• They generally are not scalable unless they are trivial
• If they are trivial then it is easy to get misleading results: easy to compile away the complexity

• Almost all good/universal benchmarks are based on randomization methods:
• Randomized Benchmarking, Cycle Benchmarking, Quantum Volume, Quantum Supremacy, etc
• Application performance can be poorly predicted by these standard methods (without the solution

below)

• Do we need application-based benchmarks to solve this problem? Absolutely no we don’t!

• The simple solution is to use randomization methods for both benchmarking *and* for
algorithm implementation – THIS CLOSES THE GAP, while also improving algorithm
performance!
• Solution: Cycle benchmarking for Circuit Benchmarking via Randomized Compiling

Explaining the gap: coherent errors

Coherent/calibration error: over-rotation error about z-axis:

has error super-operator:

Note that the off-diagonal terms (coherent errors) scale as:

But diagonal terms scale as: These properties
hold for arbitrary
unitary operations
in all dimensions!

Pauli Error Channels – a simpler error model

• Dominant errors are coherent errors
• Finite precision (and drift) of the analog classical control (for qubit rotations and qubit

couplings) introduces control errors, which are fundamentally coherent errors

• So Pauli error channels are physically unrealistic errors unless randomization is applied

• Randomization removes coherent errors (no cross-terms in the chi-matrix)

where

Randomized Compiling

Key ideas:

Averaging over
compensated Pauli
operators suppresses
off-diagonal terms,
eliminating coherent
(calibration/drift) errors.

Minimal or no increase
to circuit depth.

Unlike DD does not
require knowledge of
noise axis

Motivation for RC
Calibration/coherent/unitary error: Stochastic (decoherence) error:

Effect of RC:

Very, very bad Very, very good

Motivation for RC

Pauli-transfer Matrix:

EXAMPLE of calibration/coherent/unitary error:

Effect of RC:

Why this matters:

eg, error of 10-2

eg, error of 10-4

Errors impact on
applications

Errors as RB
sees them

Hashim et al,
arxiv: 2010.00215

Randomized Compiling
RC works for universal circuits: NISQ circuits and/or logical-
level circuits

RC is necessary for error mitigation

RC is not Pauli Frame Randomization (PFR); PFR only works
for Clifford circuits, because you need to be able to track the
Pauli frame

In RC, we correct for the frame changes locally via a
deformed twirl:

Compensating operations be efficiently pre-computed or on
the fly.

RC Suppresses Coherent Errors
Pr

ob
ab

ili
ty

 o
f i

nc
or

re
ct

 so
lu

tio
n

RC Requires a Few Randomizations (Hoeffding Inequality)
Pr

ob
ab

ili
ty

 o
f i

nc
or

re
ct

 so
lu

tio
n

Number of randomizations
needed is small, around 20,
and independent of the
quantum computer size!

Proof: Hoeffding Inequality

Example: Randomized Compiling (RC) on LBNL superconducting
system

Experimental
data from LBNL-
AQT comparing
circuits with and

without RC

Suppression works
for universal

circuits & even for
random circuits!

Pr
ob

ab
ili

ty
 o

f i
nc

or
re

ct
 so

lu
tio

n

Hashim et al,
arxiv: 2010.00215

I. Intro and Background:
• Randomized error diagnostics vs system performance: closing the gap
• Role of randomized compiling

II. Cycle Benchmarking
• Cycle benchmarking and cycle error reconstruction

• Learning the process fidelity and Pauli error rates under parallel instruction sets across n-qubits for large n

III. System-level Benchmarking
• Performance guarantee for applications
• A scalable quantum volume benchmark

14

• Any universal circuit can be put into a canonical form, consisting of a sequence of easy and hard
gate rounds

• Each round is also called layer or a (clock) cycle

• If the round contains a two-qubit Clifford gate, a Hadadmard, or a T-gate, then it is a “hard gate
round”.

• T-gates are not transversal and are usually implemented via magic state injection

• There are very large overheads for reducing the error rate on T-gates

• All other Clifford single qubit gates are easy gate rounds

• Errors on easy gate rounds are typically an order of magnitude smaller than those on hard gate
rounds

• A hard gate round preceded by an easy gate round is called a dressed hard gate or dressed cycle

15

Cycles vs “effective dressed cycles”

Randomized
Fixed

Randomized
Fixed

Dressed cycle

Avg

Often improves circuit fidelities by
making error more stochastic, as opposed to coherent.

Dressed cycle

FixedFixedFixedFixed

=

Effective
dressed cycle

Effective
dressed cycle

Cycle benchmarking learns the fidelities of
dressed cycles

• These dressed cycles match the RC-based
implementation of any application circuit.

• Cycle benchmarking scales very, very well to arbitrarily large quantum processors

• Estimate fidelity of any combination of operations across n-qubit system

• Bare (interleaved) gates can be any “hard gate round” as in our randomized compiling paper

• Captures cross-talk, unlike simultaneous RB

 Erhard et al, 2019
17

Cycle Benchmarking for each available Hard Cycle
IBM Q: Process
infidelity on all
available hard gate
rounds on all
available 5 qubit
chips

Claim 1: From this
CB data set we can
accurately predict
the performance of
any application!

Claim 2: The CB
approach to
benchmarking
scales to arbitrarily
large quantum
computers!

I. Intro and Background

II. Cycle-level Benchmarking and Cycle Error Reconstruction
• Cycle benchmarking circuits; Pauli infidelity estimation

III. System-level Benchmarking
• A performance guarantee for applications
• A scalable quantum volume benchmark

19

• For very broad error models, and assuming the application of twirling to reduce errors to a Pauli
channel, then the fidelity of composition is closely approximated by the individual cycle fidelities:

• The CB process fidelity data set for the hard gate rounds gives a predictive and scalable system-
level benchmark that predicts performance for any application circuit!

• We can also bound the TVD for any circuit:

• This means we can bound the solution accuracy via the TVD for any quantum application!

20

Carignan-Dugas et al, Quantum 3, 173 (2019)
Emerson et al, forthcoming

TVD bound for
randomly selected
hard gate rounds.

These are the
“dressed gate”
fidelities relevant
to RC circuit
performance.

Leads to a natural,
scalable fidelity
benchmark &
performance
bound for any
application

21

• Decompose QV circuits into hard and easy rounds: this defines dressed gate rounds

• Apply CB to each dressed hard gate round

• Obtain a scalable fidelity benchmark for any application circuit using this (standardized) CB
data set

• Setting a threshold for this fidelity defines a scalable quantum volume benchmark as a “generic”
performance benchmark!

22

• Previous system-level randomized benchmarks like Quantum Volume/XEB do not scale
• Exponential cost in sampling measurement outcomes, predicting ideal outcomes, and/or determining

figure of merit “heavy-output” success probability
• Limited to benchmarking systems with less than ~50 qubits (ie, useless quantum computers)

• Application-based benchmarks, like QED-C, either do not scale and/or have other problems
• Exponential cost in sampling measurement outcomes, or exponential cost in predicting solutions
• Or they select overly simplistic circuits to avoid the above problems

• Easy to compile to triviality, so companies do not need to actually perform most gates
• Not representative of eventual use-cases in “utility” regime where we will not know the correct solutions

• And open to exponentially expensive error mitigation and compilation schemes that give misleading
system performance estimates: not relevant to future use-cases in the “utility” regime

23

• Cycle benchmarking and Circuit Benchmarking
• Solves all of the problems with previous system-level benchmarks
• Works for arbitrarily large Quantum computers
• Closes the gap between component level randomized benchmarks and application-level performance
• Predicts the performance of any and every application-level benchmark via randomized compiling
• Bonus: improved application-level performance via randomized compiling
• Provides robust performance guarantees for applications
• Can define a scalable quantum volume benchmark

24

