
Motivation: QC needs error-correction

1

Physical (raw) qubits

● not well behaved
● faulty - affected by

environmental noise and
manufacturing inconsistencies

● solitary (not many) on a device

Error-corrected qubits

● controlling the risks
● not faulty - or controlled

failure rates
● difficult to achieve due to lack

of hardware qubits, not
scalable classical software
etc.

WHAT ALGORITHMS
SHOULD WE STUDY
WITH 100 QUBITS AND
1M LOGICAL GATES?

Alexandru Paler

Aalto University, Helsinki, Finland
Quantum Software and Algorithms Group

alexandru.paler@aalto.fi

funded by:

A Brief Introduction to Surface Codes

Scalable (Machine Learning) Decoders

Faster Decoding by Pipelining and Parallelisation

Many
cores

system

5. Fastmatch

& Correct 4. P
rematch

2. Virtual
Prematch

1.
 D

et
ec

tio
n

Ev
en

ts

3. Correlated

Analysis

Goal: Real-time scalable decoding

Method:

1. Pipelining and Parallelism

2. Solve simple matches before full decoding

3. On-the-fly reweighting to account for error correlations

4. Do not sacrifice decoding performance for speed

Helper functionalities:

a. Automatic computation of logical error rates

b. Exhaustive test of single and double error correction

c. Prepare, benchmark and validate 64 core real time operation

d. Prepare for different code variants

IN

OUT
13

Correlated analysis of errors

Systematic to analyse and decompose correlated errors.

Circuit level simulation - Gates have a list of possible errors

14

Correlated analysis of errors
Systematic to analyse and decompose correlated errors.

Circuit level simulation - Gates have a list of possible errors

Errors generate detection events: 1 (connect to boundary), 2, 2+

2+ Detection events from a single error have to be decomposed

Treat 2+ events like hyperedges: decompose into known edges

An edge is generated by errors, the probability of an edge is
determined by the prob of the errors

15

Edge errors

Edge errors Edge

Correlated analysis of errors
An edge is generated by errors,

the probability of an edge is determined by the prob of the errors

Errors are generated by gates.

Assume independent gate errors.

p_corr = sum of probs from gate errors.

Update edge probability (after prematching)

p_new = p_old + p_corr

16

Edge errors Edge

Edge g1 errors Edge g2 errors Edge

Results: pipelinening and correlated decoding

17

Fast decoding with comparable results to arXiv:1310.0863v1 d3@10-5 < 10-7 d9@10-3 < 10-7

Hardware agnostic correlated analysis for reweighting edges

Prematching to support reweighting and fastmatch

ML Decoders: Introduction and Motivation
Optimal Decoding of QECC is a hard problem [1]

Belief propagation (BP) - one of the best-known classical decoding algorithms

● message passing between data nodes and check nodes
● the algorithm looks for qubit-wise most likely error
● converges when predicted syndrome == actual syndrome
● fast, but not good for surface codes -> BP + Ordered Statistics Decoder[5]

Are there more complex forms of BP (message passing) decoders?

● Neural-BP[2]
● Generalized BP[3]
● Can we learn the BP algorithm? Yes -> GNN (see next slides)

Neural Network (NN) decoding has constant decoding runtime

Limitations of previous NN based decoding approaches:

● Different NN architectures for different code types
● Retain for each code distance
● there is a GNN decoder [4], but it does not work like we want it

Tanner graph for surface code of
distance 3: RED vertices are check
nodes, GREEN vertices are data nodes

[1] https://arxiv.org/abs/1310.3235
[2] https://arxiv.org/abs/1811.07835
[3] https://arxiv.org/abs/2212.03214
[4] https://arxiv.org/abs/2307.01241
[5] https://arxiv.org/abs/2005.07016

18

O(n3)

We want to build a NN based decoder

● which is learning fast and which can operate fast
● works for LDPC codes – also the surface code

We present a decoder that is learning the constraints of QECC decoding

https://arxiv.org/abs/1310.3235
https://arxiv.org/abs/1811.07835
https://arxiv.org/abs/2212.03214
https://arxiv.org/abs/2307.01241
https://arxiv.org/abs/2005.07016

Why ML Decoders?

iOlius, A. D., Fuentes, P., Orús, R., Crespo, P. M., & Martinez, J. E. (2023).
Decoding algorithms for surface codes. arXiv preprint arXiv:2307.14989.

ML Decoding has linear time (although the scaling
of the models with code distance is not known)

Why ML Decoders?

iOlius, A. D., Fuentes, P., Orús, R., Crespo, P. M., & Martinez, J. E. (2023).
Decoding algorithms for surface codes. arXiv preprint arXiv:2307.14989.

ML Decoding has linear time (although the scaling
of the models with code distance is not known)

What the goal is:

What the state of the art is:

The Graph Neural Network (GNN) Decoder
Learning BP to Satisfy Constraints

red: input vertices in GNN
blue: output
green: node state
messages are sent along the edges

● edges are
constraints
necessary for the
solution

● vertices are
forming constraint
pairs

21

Decoding works like
solving Sudoku –
solve the
constraints

Ref [1]

[1] https://arxiv.org/abs/1711.08028

https://arxiv.org/abs/1711.08028

Graph Neural Network (GNN) Decoder
The Sudoku analogy - Learning BP

red: input vertices in GNN
blue: output
green: node state
messages are sent along
the edges

● edges are constraints
necessary for the
solution

● vertices are forming
constraint pairs

22

? ? ?

0 1

? ? ?

1 0

Red = filled values =
syndromes
Green = to fill =
errors / data qubits

Tanner graph for
surface code of
distance 3: RED
vertices are
check nodes,
GREEN vertices
are data nodes

GNN as replacement of MWPM or BPOSD for Surface code

23

GNN as replacement of BP2-OSD for IBM’s BB code

24

Very Fast Compilers (for Lattice Surgery)

● Start with a lattice of NN connected qubits that can
operate a Surface Code Cycle

● This lattice is partitioned into tiles.
● A tile can hold a patch, which encodes a logical qubit in

a planar code
● Patches have different kinds of boundaries that are

used to perform multibody measurements
● Unused lattice can be used as routing to carry out

measurements among patches with no shared boundary

26

Our Challenge: Logical Computations at scale
100s to 1000s of logical qubits

https://github.com/latticesurgery-com/

26

LS Compiler Architecture
A pluggable pipeline in decoupled stages, with options and text-based intermediate representations

Pre-processing is decoupled from routing on the lattice
thanks to an intermediate representation of Lattice
Surgery Instructions and a Layout Specification

28

Babbush, Ryan, et al. "Encoding electronic spectra in quantum circuits with linear T complexity."
Physical Review X 8.4 (2018): 041015.

Paler, Alexandru, and Austin G. Fowler. "OpenSurgery for topological assemblies." 2020 IEEE
Globecom Workshops (GC Wkshps. IEEE, 2020.

Space-time volume of braided circuit

Space-time volume of lattice surgery (LS) circuit

Scalable Reinforcement Learning

How do we optimize this? Maybe
we can discover optimization
algorithms…Let’s use RL….

RL Scalability

 Fast & scalable RL is needed

RL Introduction
Reinforcement Learning: trial and error approach iteratively

Goal: finding the optimal policy that solves a specific problem

Quantum circuit optimization: reduce cost of the circuit

Cost can be many things:

● Number of gates and their specific cost (e.g two-qubit gates are more
expensive)

● Depth of the circuit
● Number of qubits
● How well does the circuit map to a qubit layout

Our goal: use RL to reduce the cost of the circuit

Problem: rewrite-rule based optimisation tends to increase the depth before it reaches optimum

Difficult optimization landscape

Quantum Circuit Optimization Landscape

1. You need to get to
this point

3. And exploring too much might kill you…
2. But the path reaches summit first

You: RL agent

Example of a RL Epoch

Example of a RL Epoch

by recording the maximum, future
rewards can only get better:

● minor improvements if close to
maximum

● huge improvements if far from the
maximum

Very Large Scale Circuit Optimizer

Motivation
No software can handle gate optimization in
randomly chosen circuit locations for
circuits with millions (billions?) of gates!

Benchmarked state-of-the-art
optimizers with circuits
of 1 million templates.

Optimizer Time

Cirq 1.2.0 > 20 hours

Tket 1.21.0 ~ 1 min

PostgreSQL 14 ?

Example of
practical circuit

sizes

Why random? circuit optimisation is a combinatorial (not sequential) problem.
In-memory optimizers are slow for random memory access! Databases are faster.

35

Methods
We consider four types of gate templates:

● Single-qubit gate cancellations

● Two-qubit gate cancellations

● Base changes

● Commutations

36

Generating Synthetic Benchmark Circuits

1. Start from empty circuit - identity on all
qubits

2. For nr in range(LARGE_NUMBER)
a. Select random qubit(s)
b. Insert pairs of cancelling gates

i. Hadamard gates
ii. CNOTs

e.g. LARGE_NUMBER = 1 million (see next slides)

Results: Random Synthetic Circuits

● Our tool is faster than |tket>
○ for more than 10k gates
○ speed-up increases with circuit size

considered the fastest
optimizer (written in

Rust)

37

Results: Multi-threaded performance

Type-1 Type-2

Our benchmark circuit contains 1 million templates of either Type-1 or Type-2
● 2 million gates when using type-1
● 5 million gates when using type-2 38

Sp
ee

d-
up

Sp
ee

d-
up

Conclusion: Executing algorithms/circuits of 100
qubits and 1M gates requires more work

39

1. Decoders
a. Non-ML Decoders can be sped up by pipelining and parallelization

https://arxiv.org/abs/2205.09828
b. GNN Decoders seem to be learning the messages and algorithms of a message passing

2. Large scale compilation and optimization
a. (Reinforcement) Learning of optimization algorithms has many bottlenecks
b. Engineering Reward Functions seems to speed/improve RL https://arxiv.org/abs/2311.12498
c. Compression of RL states with autoencoders https://arxiv.org/abs/2303.03280
d. Parallelization and Fast Random Access of circuit optimization

i. ensures correctness of rewrites performed in parallel on the circuit
ii. supports analysis of circuits (e.g. average number of CNOT gates between pairs of

neighbouring T gates)

funded by:

https://arxiv.org/abs/2205.09828
https://arxiv.org/abs/2311.12498
https://arxiv.org/abs/2303.03280

