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Motivation: QC needs error-correction

Physical (raw) qubits

not well behaved

faulty - affected by
environmental noise and
manufacturing inconsistencies
solitary (not many) on a device
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Error corrected qublts

controlling the risks

not faulty - or controlled
failure rates

difficult to achieve due to lack
of hardware qubits, not
scalable classical software

etc.
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A Brief Introduction to Surface Codes




4 e
L L
Code. 5
7
=
Z "
S
g ‘1/ \ 3 ob'.s‘kc\hm. ‘_‘
b ® 0 =
./ =L '{/M‘CL 3
\0/ \o/ \o E_
o S A SR \'
i ,u\ / 5
e 9 doka 9. :
o - doda 9t 4 Sjn{/‘ -
o - sydxgubl 5T g

Lm —'i]nd & J‘Jn‘t TAY 2oVts




F
L L
Code 5

%

e
Z "
S
g ‘1/ \ 3 ob'.s‘kc\hm. ‘_‘
7 0 =
- tree. g
\0/ \o/ \o E_‘
ek
- 9 doka 9. :
o - doda 9t 4 Sjn{/‘ -
o - sydxgubl 5T g

Lm —'i]nd & J‘Jn‘t TAY 2oVts




A

5
El
sg_‘
X

rm g ddw& .
asxil. 420£.0948

‘4

e‘—
M AT PR W T o w m  w
_x-_._.t_du = O RN 0 ORI T O O T S WG WS pu p——y—”y




o Wo LALLM WLOL ML OML WML LM

ﬂttttttﬁfll!tt‘lh.

.

o !
& |

.

rm g d"*“v-ﬂ’
acxiv. {208 0948

r—
)
=

, %’é
#

A







?
How A Coauls Qaj;{"_(‘p(_

_1».:’-" - 2o, E

ol rouds

W= 3
/ O c.crrtﬂ- W
L

@ me e OF“\ Now sl




(00)'_, {\\‘\0\*\ ‘
7 ;
l

b vl of
dx dx o

i
LY |
.E
4]% )N) w{ts.

155 )J&s ~ lno ?Q&L—..

»(Jdlﬂo\\[a% r~ loé-fb.’l.

=) 403 \\c{uwﬂ-

R VI M R R R I R R I R




Sprestin

fime Jolame ot

=) 403 \\{uw&

R R R R R

i
LY |
.E
*P[/@ ’N) w{ts.

155 )J\h ~ lno ?q%d‘c

(Ooh, {”Q-\‘{O\'\‘
P
./‘ :

borsats o
dx dx o

JJGMZ»JQ% r~ loé-ﬁl

J/a(x Modsl - m\?& JJJ ~

hye puak /o







Scalable (Machine Learning) Decoders




Faster Decoding by Pipelining and Parallelisation

Goal: Real-time scalable decoding
Method:
1. Pipelining and Parallelism
2. Solve simple matches before full decoding
3. On-the-fly reweighting to account for error correlations
4. Do not sacrifice decoding performance for speed
Helper functionalities:
a. Automatic computation of logical error rates
b. Exhaustive test of single and double error correction
c. Prepare, benchmark and validate 64 core real time operation

d. Prepare for different code variants
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Correlated analysis of errors

Systematic to analyse and decompose correlated errors.

Circuit level simulation - Gates have a list of possible errors
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Correlated analysis of errors

Systematic to analyse and decompose correlated errors.
Circuit level simulation - Gates have a list of possible errors

Errors generate detection events: 1 (connect to boundary), 2, 2+

Edge errors

2+ Detection events from a single error have to be decomposed

Treat 2+ events like hyperedges: decompose into known edges

Edge errors | Edge

An edge is generated by errors, the probability of an edge is
determined by the prob of the errors
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Correlated analysis of errors

An edge is generated by errors,

the probability of an edge is determined by the prob of the errors
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Errors are generated by gates.

Assume independent gate errors. a3

Edge

g1 errors | Edge

S .._"_‘_.

1H HM
g2 errors | ede [

p_corr = sum of probs from gate errors.

Update edge probability (after prematching)

p_new =p_old + p_corr



Results: pipelinening and correlated decoding

Fast decoding with comparable results to arXiv:1310.0863v1 d3@10-5 < 10-7 d9@10-3 < 10-7

Hardware agnostic correlated analysis for reweighting edges

Prematching to support reweighting and fastmatch

Pipelined correlated minimum weight perfect
matching of the surface code

Alexandru Paler' and Austin G. Fowler?

LOCE+D

', 9 uncorrelated (red) and correlated (blue)

1.00E-1

1.006-2

1.00E-3

1.O0E-a

1.00E-5

1.00E-6

B T e BRI SRLTE BEYTE BRI )

-~

- 19 s ,
1.00E-7 ‘Cf ; ,."// _ ./_. o 4
:

LUULUI
DN RE | .

1.00E-02

R T | .

1.00E-03

Y )

1. 00E-04

1.00E-9 w4} o
1 COE-06
17



ML Decoders: Introduction and Motivation

Optimal Decoding of QECC is a hard problem [1]

Belief propagation (BP) - one of the best-known classical decoding algorithms

Are

rface code of
ices are check
ces are data nodes

Neu etwork (NN) decoding has constant decoding runtime
Limitations of previous NN based decoding approaches:

e Different NN architectures for different code types
e Retain for each code distance
e there is a GNN decoder [4], but it does not work like we want it


https://arxiv.org/abs/1310.3235
https://arxiv.org/abs/1811.07835
https://arxiv.org/abs/2212.03214
https://arxiv.org/abs/2307.01241
https://arxiv.org/abs/2005.07016

ML Decoding has linear time (although the scaling

Why M L DeCOderS? of the models with code distance is not known)

Complexity |
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. Threshold

iOlius, A. D., Fuentes, P., Orus, R., Crespo, P. M., & Martinez, J. E. (2023).
Decoding algorithms for surface codes. arXiv preprint arXiv:2307.14989.



Why ML Decoders?

57 RPOSO G AP
Complexity
i Olan) On’) O(n log(n))

0116 013 : 0.140

iOlius, A. D., Fuentes, P., Orus, R., Crespo, P. M., & Martinez, J. E. (2023).

Decoding algorithms for surface codes. arXiv preprint arXiv:2307.14989.

ML Decoding has linear time (although the scaling
of the models with code distance is not known)

What the goal is:
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The Graph Neural Network (GNN) Decoder

Learning BP to Satisfy Constraints

Decoding works like
solving Sudoku —
solve the

edges are

necessary for the
solution

vertices are
forming constraint
pairs
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red: input vertices in GNN

blue: output

green: node state

messages are sent along the edges

[1] https://arxiv.org/abs/1711.08028



https://arxiv.org/abs/1711.08028

Graph Neural Network (GNN) Decoder
The Sudoku analogy - Learning BP
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GNN as replacement of MWPM or BPOSD for Surface code
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GNN as replacement of BP2-OSD for IBM’s BB code

-
gnn vs bp2osd

Logical Ervor Rate (LER)
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Very Fast Compilers (for Lattice Surgery)
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Our Challenge: Logical Computations at scale
100s to 1000s of logical qubits

e Start with a lattice of NN connected qubits that can
operate a Surface Code Cycle

e This lattice is partitioned into tiles.

e Atile can hold a patch, which encodes a logical qubit in
a planar code

e Patches have different kinds of boundaries that are
used to perform multibody measurements

e Unused lattice can be used as routing to carry out
measurements among patches with no shared boundary

I.Jnll:ar'u
Fund

%7 https://github.com/latticesurgery-com/

A”
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arXivi2302.02459 (quant-ph)

A“ High Performance Compiler for Very Large
Scale Surface Code Computations

Goorge Watking, Heang M NQuyen, Yarun Seshade, Kegian Watking, Steven

Sersenen LA A A L AR RN SRR

(0.0 (0.1) (0.8}
Entangled Entangled
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LS Compiler Architecture

A pluggable pipeline in decoupled stages, with options and text-based intermediate representations

Pauli
Rctations

Pythan
Slicer

-

Input QASM
cireuit

A

Pra-processing

-

pe—

Routing and
sceduling

‘! 4

Slices of
Palch
Computation

Qates

Pre-processing is decoupled from routing on the lattice
thanks to an intermediate representation of Lattice
Surgery Instructions and a Layout Specification

HGate 2
SGate 1
-, HGate 2

Layout
Spacification

Init 4 |+>
RequestMagicState 9
~ MultiBodyMeasure 1:

Cav Shcer

Z,
MeasureSinglePatch 4
MultiBodyMeasure 2:X
SGate 2
Init 5 |+>
MultiBodyMeasure 1:
MultiBodyMeasure 2:
MeasureSinglePatch
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Scalable Reinforcement Learning

Space-time volume of lattice surgery (LS) circuit

Paler, Alexandru, and Austin G. Fowler. "OpenSurgery for topological assemblies." 2020 IEEE
o Globecom Workshops (GC Wkshps. IEEE, 2020.

Space-time volume of braided circuit O O

How do we optimize this? Maybe
we can discover optimization
algorithms...Let's use RL....

Babbush, Ryan, et al. "Encoding electronic spectra in quantum circuits with linear T complexity."
Physical Review X 8.4 (2018): 041015.

28



RL Scalability

Training the agent takes :
single compute node with|32 CPUs and 2 GPUs

al'<1V > quant-ph > arkn-2311. 18588

We run multiple environments in parallel on the hmicoiiabin o
(‘p[ T d - Lh l- } d t . t} JSvoenmed on 30 Mew 2023}

LS during Lhe samping phase and tran 8¢ - gntimizing ZX-Diagrams with Deep Reinforcement Learning
agc-nt distributed on both GPL' 8. The implemen- RO e SR A
t&tlon Of the algont' COll.ld derCtly take ad\'an- IX-diagrams are 3 powertyld gphics! langsage for the descrnption of guantem processes wieh apolications in fundamemal guar
[.8.ge Or l&[ger (}()ﬂ]pu[e ][Odes L() speed up [raining descrite. Thase rudes car be erphoted 1o aptmize the structure of ZX-diugrami for 4 range of applicatiaons. Howewer, findng ar
time probless ead show thal & trained reicdorcement lharnng agert can signficintly outperfors other opliszaticn techngques bke o

As Al applications demand greater compute power,
efficiency may be improved via better chip desagn.

ar<1v S ot > RrXiv2306.09633

The Nature paper [1] by Google researchers, pub- Cmninis Selahzs > Michisg Ubnesl
lishoed in Jusse 2020, was advertised as a chipdesign o L e g S o e W iy 4 M e oy
breakthrough using Muchine Lesrning (ML), [t ad-— 1he False Dawn: Reevaluating Google's Reinforcement Learning for Chip Macro Placement

dressed n challe roblemn 1o optimize locations

igor L Markoy

of cireuwit components on a chip and described ap-
plications to five TPU chip blecls, implying that
no better methods were avatlable at the time in And reporting. Sefore pobilibng, Coaghe reaed internad afegubon of il We nate solxy argicdionm ard condlunism St Oz desigr

ademia or industry. The paper generalized the
claims beyond chip design to suggest Lhat Rein.

furcf'm-.\m L'mmlr?g [RL.} (..»mp.rrfr.nrlns gtate of the ' Fast & Scalab|e RL iS needed

art in combinntorial optimization.

Rardamamant sarang KL for phyceal dedgn of cdicon chipe in a Cooghe 2071 Aanure papar stered coomrassrcy das o8 poorly Socunen ed chume thue recss splime
dewmen traied thix Cooghe BL lags Beband (0 Maman desgoers, (3] 0 méll-Saomn Soo the Semalyied Armeabngs, aod (00 gene aliy- pradaile Commmerdinl saftwire, whas




RL Introduction A, LAt j<——

H H —e— H H -~
Reinforcement Learning: frial and error approach iteratively l — =Y RT“
1 H ~+'1:F H '
Goal: finding the optimal policy that solves a specific problem
Quantum circuit optimization: reduce cost of the circuit \
e
Cost can be many things: =
e Number of gates and their specific cost (e.g two-qubit gates are more -
expensive) . g,
e Depth of the circuit 5 D —
e Number of qubits &
e How well does the circuit map to a qubit layout <= ,|ﬂ].~g§. ' e -
& {n4{n} o1-=o

Our goal: use RL to reduce the cost of the circuit

a4

Problem: rewrite-rule based optimisation tends to increase the depth before it reaches optimum

‘ Difficult optimization landscape



Quantum Circuit Optimization Landscape

\o

1. You need to get to
this point

v

You: RL agent %

=)

-

2. But the path reaches summit first s

X fn ()‘;. 9'} .a.,,,‘.'.,..--,
rewardy(C) = (dfgl‘f_!F:(_C) + (..‘nsf(C))

3. And exploring too much might kill you...



Example of a RL Epoch

YIS I IRIEEY" SdeseBbERUERBDED |
s |
R( = - i
. s )
i tes
o
3
[
circuit 1 3 4 5 6 7 8 14
degree G 8 i @ 0 £ 5 8 4
scount 8 12 16 20 18 16 14 12 2
mcount 3 3 3 3 3 3 3 3 1
depth 6 B 10 12 12 12 10 E] 3
cost 415 5.08 6.00 6.92 6.46 8.00 554 5.08 462 4.15 3.69 3.23 277 1.23
avg degree 1.5 156 15 15 15 1.5 1.5 15 16 15 1.5 15 1.5 1
maxavgdegree 15 15 15 15 15 1.5 15 15 15 15 15 15 15 1.5
maxdepth 6 8 10 12 12 12 12 12 12 12 12 12 12 12
maxcost 4.15 5.08 6.00 6.92 6.92 6.92 6.82 6.92 6.92 6.82 6.92 6.92 6.92 6.92

reward 1.2580 1250 1250 1250 131 1404 1.627 1,803 2610 47668 6.106 8117 11.3M 1256.000



Example of a RL Epoch

circuit 1 2 3 4 5 B 7 R a n 1" 12 Lk} 14
degree 6 8 6 (]

scount 8 12 16 20

s : - - @ degree @ depth cost @ reward
depth 6 B 10

cost 415 5.08 6.00

avg degree 15 1.5 15

maxavgdegree 15 15 15

maxdepth [} 8 10

maxcost 4.15 5.08 6.00

roward 1.250 1250 1250

by recording the maximum, future
rewards can only get better:
e minor improvements if close to

. 1.00E+1
maximum
e huge improvements if far from the e
maximum
o4 1 : | : o
0 depehicsy
rewardy(C) = (dﬁg"f‘;(c) * (.‘03'7(‘0])



Very Large Scale Circuit Optimizer




Motivation

No software can handle gate optimization in
randomly chosen circuit locations for ;g:;ﬁ':“m g.’ﬁﬁfﬁ“ﬁ:ﬁ :omgond o
circuits with millions (billions?) of gates! spim, as in Fiq. (56), The chimension af the system andicates bow

many sites (spatial orbotals) are on each sde of the syguare model
The number of system guhits 2 thus twicy the number of spat)
oehituls. The number of logscal mcilloe is compuoled = Eg (6 Example of

imi H Finally, the number of T gates is computed usamg By, (63), whi o : ]
Optlmlzer Time assumes that w/2 = 4 and AE ~ ¢/100, The first three peobl practlgal ErEUE
sizes m the whle we sear the classikcally isomctoble regime sizes

Cll'q 120 > 20 hOUI’S Spin Logical Total
Duxension orbatals ancilla ogucal I' coun

HGx6 [/ i35 105 93 x 1
Exx 128 35 161 29 % 100
10 %10 200 36 256 7.0 x 1M
) Wx20 8K 42 842 1.2 x 10

Tket 1.21.0 ~ 1 min

PostgreSQL 14

Encoding Electroni: Spactra in Quantum Clreutts with Lingar T

Benchmarked state-of-the-art W hpn] Complexity
. . . . . R g | N',:-hl::.-::."::‘qr.o--\ Drwirir W Marry Kb Mutun Swrvwd VaOarr, Mavarwivs Puten Aoyt Ponvie
optimizers with circuits 5" Juj4n} o R DA < e 11 e T8

of 1 million templates. =T
|} REVERSE

Why random? mmm circuit optimisation is a combinatorial (not sequential) problem.
In-memory optimizers are slow for random memory access! Databases are faster.
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Methods

We consider four types of gate templates:

e Single-qubit gate cancellations @4@—

e Two-qubit gate cancellations

e Base changes sl B L e | = /L =
Wl x
e Commutations
©— &

36



Results: Random Synthetic Circuits

100000 |-
Generating Synthetic Benchmark Circuits
10000 |- =
1. Start from empty circuit - identity on all 1000 ,
qubits 4 /
2. For nr in range (LARGE NUMBER) § e /_/"‘-—
a. Select random qubit(s) A | s
b. Insert pairs of cancelling gates 2 -
i. Hadamard gates F
1 enome ° o o & TKET - blocked & DB - blocked
e.g. LARGE NUMBER = 1 million (see next slides) ' ' '

100000 1000000
CNOT count

considered the fastest
optimizer (written in
Rust)

Our tool is faster than ltket>. o o
o for more than 10k gates
o speed-up increases with circuit size

37



Results: Multi-threaded performance

16

1"

12

10

Speed-up

—— . . H | H
‘{ HHHM—= — | e p— re—
Type-1 LIl Type-2 & {ui+in;
a) HADAMARD - 1)} REVERSE
/ 14
Ve \
Y ad 12
//7' n
o
o 1
©
8 e
o
(72 B
& rzal = _1da3l 2 ® 1330w 1ded
0
2 4 & @& 10 1 1 18 0D 2 4 6 88 W 12 14 16
Number of threads Number of threads

Our benchmark circuit contains 1 million templates of either Type-1 or Type-2
e 2 million gates when using type-1
e 5 million gates when using type-2
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Conclusion: Executing algorithms/circuits of 100

qubits and 1M gates requires more work

1. Decoders

a.

b.

Non-ML Decoders can be sped up by pipelining and parallelization
https://arxiv.org/abs/2205.09828
GNN Decoders seem to be learning the messages and algorithms of a message passing

2. Large scale compilation and optimization

a.

b.
C.
d.

(Reinforcement) Learning of optimization algorithms has many bottlenecks
Engineering Reward Functions seems to speed/improve RL https://arxiv.org/abs/2311.12498
Compression of RL states with autoencoders https://arxiv.org/abs/2303.03280

Parallelization and Fast Random Access of circuit optimization
i. ensures correctness of rewrites performed in parallel on the circuit
ii. supports analysis of circuits (e.g. average number of CNOT gates between pairs of
neighbouring T gates)

Aalto Universgi?y


https://arxiv.org/abs/2205.09828
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