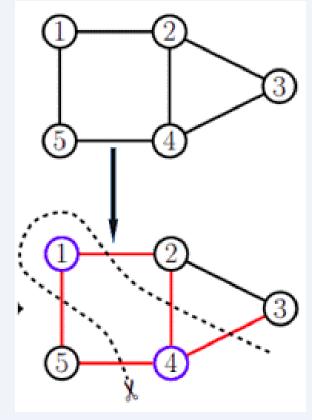
Q-score Max-Clique

Ward van der Schoot MMath

Quantum at TNO

- The Netherlands Organisation for applied scientific research
- Mission:
 - To generate innovative solutions with provable impact for a safe, healthy, sustainable and digital society in the Netherlands and beyond.
- Quantum applications at TNO. Goal:
 - To enable practical implementation of relevant applications on current and/or near term quantum devices.
- Quantum benchmarking at TNO:
 - Goal:
 - Find the perfect device for a given application
 - Considered many different application-level benchmarks
 - Focus on Q-score



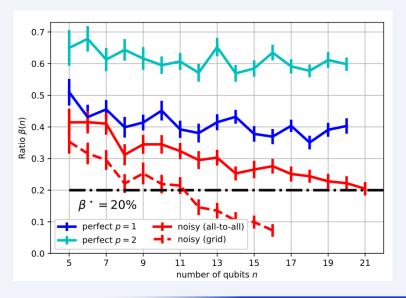
Original Q-score by Atos

• Largest problem size N for which a device significantly outperforms a random algorithm at solving the Max-Cut problem

- Max-Cut problem:
 - Given a graph G with (possibly weighted) edges
 - Find partition *P* of vertices in two sets (cut) that maximizes the cost
 - Cost C(P): total weight of edges between the two sets
 - Use $\left(N, \frac{1}{2}\right)$ Erdös-Renyi graphs
- Applicable on gate-based as well as annealing-based devices
 - Depends **not only** on the device
 - Also on the used algorithm, optimisations and resources

Q-score

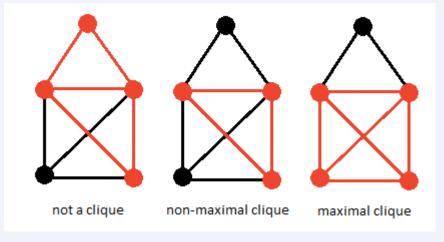

- 1. For increasing N, do the following steps:
- 2. Pick a collection of graphs of size N
- 3. Run a Max-Cut algorithm on each graph and compute average cost C(N)


4. Check whether cost is 'good':
$$\beta(N) = \frac{C(N) - C_{rand}}{C_{max} - C_{rand}} = \frac{C(N) - N^2/8}{0.178N^{3/2}} > \beta^* = 0.2$$

5. Q-score is highest *N* satisfying this

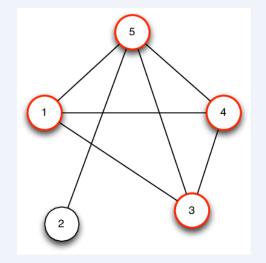
• Random cut:
$$C_{rand} = \frac{N^2}{8}$$

• Optimal cut:
$$C_{max} = \frac{N^2}{8} + 0.178N^{3/2}$$



Q-score Max-Clique

- Questions about the Q-score:
 - 1. Why do we specifically use the Max-Cut problem?
 - 2. What about other devices, such as photonic quantum computers?
- Q-score Max-Clique
 - Q-score with the Max-Clique problem
 - Find the largest clique: complete subgraph in G
 - Consider $(N, \frac{1}{2})$ Erdös-Rényi graphs



- (Natively) solvable on photonic, annealing and gate-based quantum hardware¹
 - First quantum metric suitable for all three quantum paradigms, as well as classical devices

¹ Molecular Docking with Gaussian Boson Sampling (2019) arXiv:1902.00462

Q-score Max-Clique

- 1. For increasing N, do the following steps:
- 2. Pick a collection of graphs of size N
- 3. Run a Max-Clique algorithm on each graph and compute average clique size C(N)
- 4. Check whether clique size is 'good': $\beta(N) = \frac{C(N) C_{rand}}{C_{max} C_{rand}} = \frac{C(N) 1.6416325}{2 \ln(N) 1.6416325} > \beta^* = 0.2$
- 5. Q-score Max-Clique is highest *N* satisfying this
- How do we estimate the max and random clique size C_{max} and C_{rand} ?
- Random clique size: Adding nodes randomly until no clique yields $C_{rand} = \sum_{i=0}^{N} i(1-p^i)p^{0.5i(i-1)} \approx 1.6416325$
- Max clique size: Literature study plus quantum and classical brute force suggest $C_{max} = 2\ln(N)$

Experiments

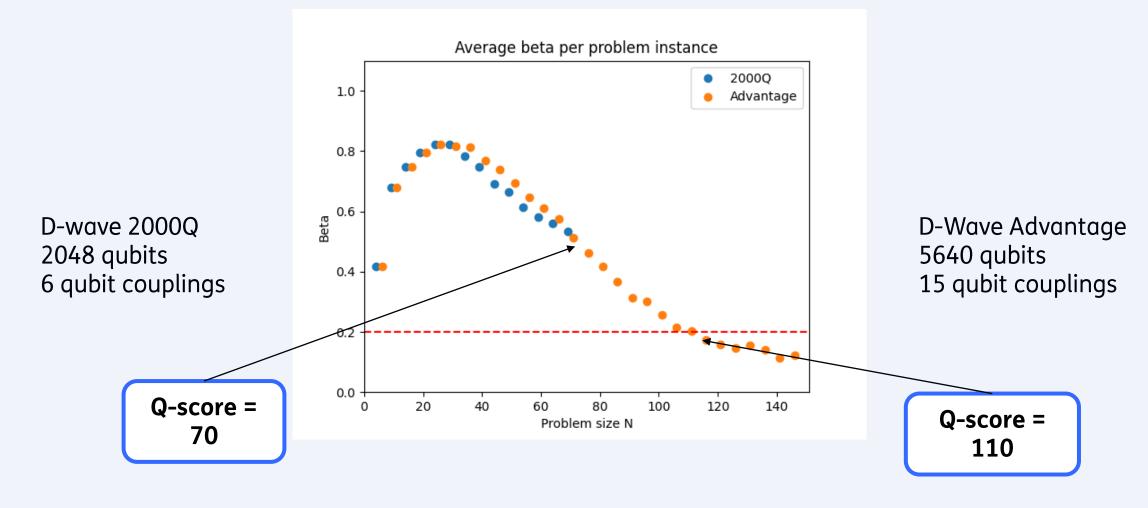
Calculate Q-score Max-Clique for following solvers

Quantum gate-based hardware IBM Guadalupe, Quantum Inspire Starmon-5

Quantum annealing hardware D-Wave Advantage, D-wave 2000Q

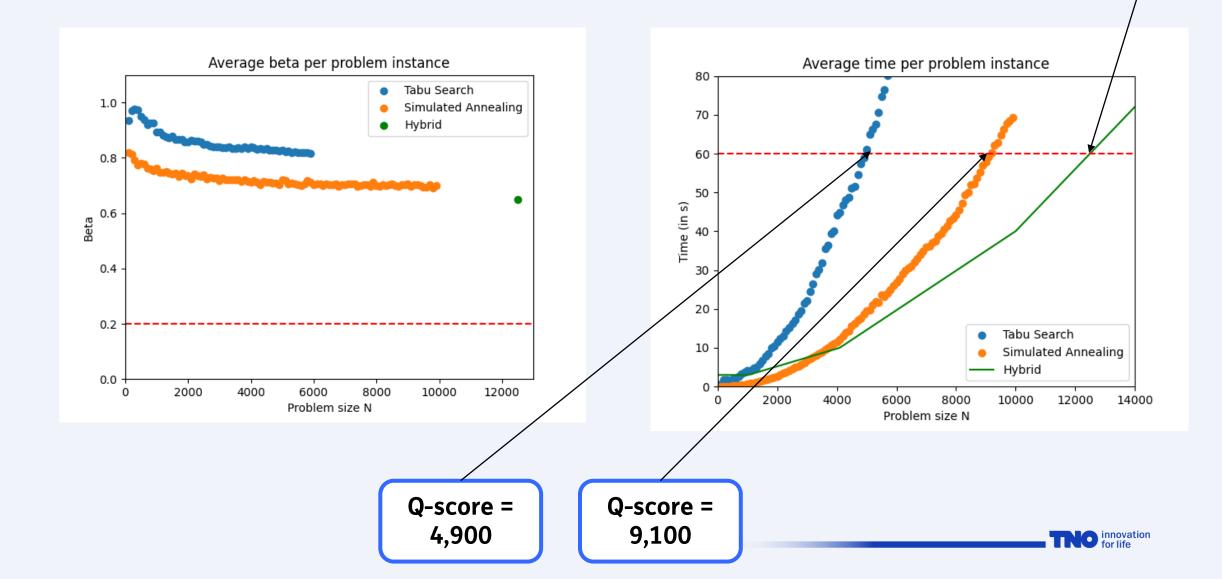
Quantum photonic hardware TODO (Quix Quantum, Quandela?)

Quantum photonic simulator Xanadu


Classical algorithms
Simulated annealing, Tabu search

Hybrid quantum-classical solvers D-wave hybrid solver

- Extra constraints for a fair comparison
 - Maximum calculation time: 60 seconds
 - Use out-of-the-box solvers:
 - Standard parameters
 - No extra optimisation allowed


Q-score Max-Clique Annealing Hardware

Q-score Max-Clique Classical & Hybrid Solvers

Q-score = 12,500

Results

Approach	Q-score
1. Tabu search	4,900
2. Simulated annealing	9,100
3. D-Wave Advantage	110
4. D-Wave 2000Q	70
5. Hybrid annealing solver	12,500
6. Quantum Inspire Starmon-5	5*
7. IBM Guadalupe	≥5*
8. Simulated gate-based	13*
9. Simulated photonic-based	20*

^{• * =} more than 60 seconds used

Conclusion Q-score Max-Clique

- A comparison between all different devices is indeed possible
 - Track development of single device or technology
 - Compare fully developed devices in the future
- Flexibility of Q-score:
 - Any problem for which a scalable expression to the random and maximal solution exists can be used in this sense
 - Time constraint
 - Degree of optimisation
- Goal:
 - Suite of metrics with plug-and-play degrees of freedom
 - Matching between application(s) and device(s)

Thank you

Contact: ward.vanderschoot@tno.nl

