

National Hybrid Quantum Computing Platform

March 2022

Jacques-Charles Lafoucriere

Quantum Computing Context

Quantum Computing, a promising technology, a new way of thinking

A new Paradigm bridging together hardware and software to accelerate and solve large-scale scientific applications and real business use-cases

A breakthrough for unsolvable issue on classical supercomputers

A reality with quantum technologies already available

- Different TRL, Small scale, Still in labs for many of them
- No unique technology to answer all problems, no standardized software layer; no easy access for users

A rich European quantum ecosystem

Diversity of hardware technologies (superc., cold atoms, trapped ions, photonics, cats qubits, etc.)

Software startups investing in verticals (health, CFD, etc.)

An emulator widely deployed, by a European HPC vendor

Strong flagships and consortia supported by Europe, national states and local territories

Industrial end-users ready to engage

Major stake: Support the global community to "Think and Be Quantum driven"

A journey based on a hybrid HPC/Quantum approach

Quantum Computers are not general purpose computers

QC is based on manipulation of natural properties of atomic particles and uses quantum effects

QC cannot be used as classical computers (access, programmability, data, resources management, etc.)

Application/Algorithms must be re-written from scratch

QC solves only some well targeted problems through new algorithms implementation

A hybrid approach by coupling classical and quantum

QC, an accelerator for suitable HPC/AI applications and algorithms to be offloaded to QPU

A workload approach to be adapted on existing middleware environment

A well-known access process

A central place to build a programmability environment, develop and make available scale-out/scale-up quantum computers as applications

National Hybrid HPC Quantum Computing Platform

A **5 years programme** based on a national physical hybrid HPC/Quantum platform

Strategy from French Quantum Plan (21-01-21)

National funding's 72,3 M€, leverage by European, industrial and regional funding Also embedded into a European hybrid quantum infrastructure

Objectives

Integrate (HW/SW) quantum technologies in HPC DC

Build the pilot of a future HPC/Quantum solution

Assess QC technologies

Develop QC hybrid software stack (libraries/middleware)

Promote, disseminate and support HQI usage (applications)

Programme organization & funding

QPU acquisitions (36,3 M€ (FR) + co-funding by Europe)

Industrial & academic R&D (25,5 M€ + co-funding by industrials)

QC ecosystem and User community support (10,5 M€ (FR) co-funded by Europe, industrials and French regions)

March 2022 Hybrid HPC Quantum Initiative

Programme Organization: QPU acquisitions (1/2)

HQI platform, an open and evolutive platform

Complementary QPU technologies

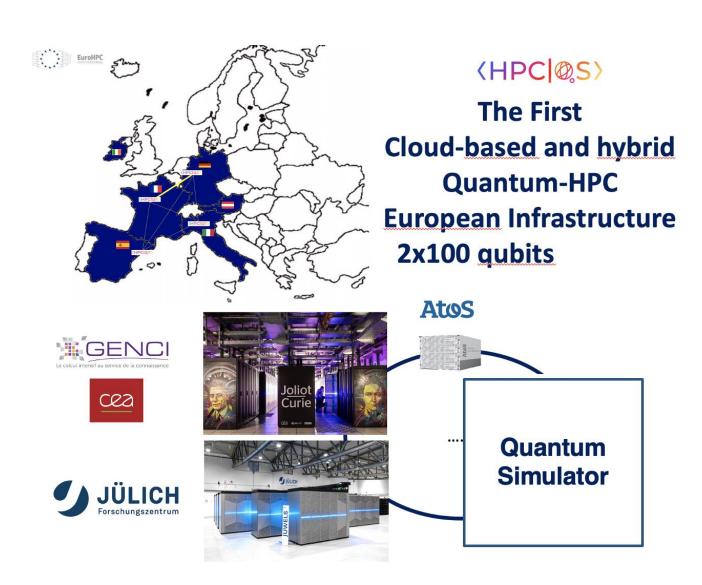
Different Technology Readiness Level

4 acquisition phases: standard product or development partnerships

Analog QPU

Gate-based QPU

Innovative QPU


Scalability of existing QPU systems (Exascale perspective) and acquisition of emergent technologies (LSQ - post-Exascale preparation)

Schedule 2022 – 2026

Programme Organization: QPU acquisitions (2/2)

EuroHPC HPCQS project: the 1st PNCQH phase and the 1st pan-European hybrid HPC/QC platform

A EuroHPC Research and Innovation action

4 years

12 M€ budget (50% CE, 50% MS)

2,83 M€ (FR – HQI)

Consortium

18 partners, 6 countries

2 quantum nodes (GENCI/CEA – FZJ)

Create a hardware agnostic, comprehensive environment made in Europe for QC and Quantum HPC hybrid applications

Programme Organization: R&D

R&D programme with industrials and academics


Results will be implemented on the platform

Mains thematic are:

- Pilot design and deployment
 - QPU integration and hybrid architecture (QLM, Cloud, HPC, ...)
 - Software environment (development tools, runtime)
- Applications
 - Optimization and machine learning
 - Simulation of physical systems
- Exploration
 - Noise characterization and mitigation
 - Quantum links for secure/safe/reliable global computation

Programme Organization: Platform Architecture

- All QPU will use the same SW stack based on Atos QLM + R&D developments
- Direct access to QPU will be supported
- Designed for NISQ and LSQ

Programme Organization: QC ecosystem and User community support

Dissemination, user support, usage (application)

HQI technologies access through a cloud-based solution

Cloud Provider will provide access to similar QC resources found in the hybrid HPC/QC platform to academics (R&D, training, etc.)

Hybrid QC dissemination

Establish a network of French quantum competence centres (label "Maison du Quantique »)

Dissemination, training, acculturation (e.g. workshops, hackathons, etc.)

Scientific and industrial **use cases development**: National Quantum PAck and European Quantum Packs (ex. through a quantum CoE transversal to existing HPC CoEs)

Thank you for your attention

