

Suggestions for building quantum programs

Harold Ollivier 2022-03-31

Séminaire TQCI

Overview of QuantumTech@INRIA

Timeline

- Started in 2001
- Since 2018, the number of permanent researchers has doubled

• 2020: 5 new Pls

• 2021: 4 new Pls

- 5 Active teams
- 2 are being created

Overview of QuantumTech@INRIA

Timeline

- Started in 2001
- Since 2018, the number of permanent researchers has doubled
- 2020: 5 new Pls
- 2021: 4 new Pls
- 5 Active teams
- 2 are being created

Main topics

- Controlling qubits
- Error correction and fault-tolerance
- Compilation / Languages
- Cryptography (q. & post q., cryptanalysis)
- Quantum information theory

Overview of QuantumTech@INRIA

Timeline

- Started in 2001
- Since 2018, the number of permanent researchers has doubled
- 2020: 5 new Pls
- 2021: 4 new Pls
- 5 Active teams
- 2 are being created

Main topics

- Controlling qubits
- Error correction and fault-tolerance
- Compilation / Languages
- Cryptography (q. & post q., cryptanalysis)
- Quantum information theory

Action plan

- Spread the word internally (Defi EQIP)
- Keep increasing the workforce
- Extend our coverage (architectures and applications)

Suggestions for building quantum

programs

Dealing with (un)certainties

• Fault-tolerant QC provide speedup

- Fault-tolerant QC provide speedup
- $\bullet\,$ It will still take time (> 5-10yrs) to get FTQC

- Fault-tolerant QC provide speedup
- ullet It will still take time (> 5-10yrs) to get FTQC
- Need to rethink algorithms

- Fault-tolerant QC provide speedup
- ullet It will still take time (> 5-10yrs) to get FTQC
- Need to rethink algorithms
- NISQ machines are available

- Fault-tolerant QC provide speedup
- It will still take time (> 5-10yrs) to get FTQC
- Need to rethink algorithms
- NISQ machines are available
- $\bullet\,$ Few guarantees are available for NISQ compatible algorithms

Dealing with (un)certainties

- Fault-tolerant QC provide speedup
- It will still take time (> 5-10yrs) to get FTQC
- Need to rethink algorithms
- NISQ machines are available
- Few guarantees are available for NISQ compatible algorithms

What does it mean for end-users?

Dealing with (un)certainties

- Fault-tolerant QC provide speedup
- It will still take time (> 5-10yrs) to get FTQC
- Need to rethink algorithms
- NISQ machines are available
- Few guarantees are available for NISQ compatible algorithms

What does it mean for end-users?

• We don't know when nor by how much QC will be useful

A single (not so simple) objective

A single (not so simple) objective

 Computing an ROI for QC investments should be the main objective of quantum programs

A single (not so simple) objective

- Computing an ROI for QC investments should be the main objective of quantum programs
 - When do we have breakeven performance?

A single (not so simple) objective

- Computing an ROI for QC investments should be the main objective of quantum programs
 - When do we have breakeven performance?
 - How much is gained past breakeven performance?

A single (not so simple) objective

- Computing an ROI for QC investments should be the main objective of quantum programs
 - When do we have breakeven performance?
 - How much is gained past breakeven performance?

The national quantum strategy is no exception

A single (not so simple) objective

- Computing an ROI for QC investments should be the main objective of quantum programs
 - When do we have breakeven performance?
 - How much is gained past breakeven performance?

The national quantum strategy is no exception

A single (not so simple) objective

- Computing an ROI for QC investments should be the main objective of quantum programs
 - When do we have breakeven performance?
 - How much is gained past breakeven performance?

The national quantum strategy is no exception

What can be done?

Why

• Linking external knowledge to internal know-how

Why

- Linking external knowledge to internal know-how
- $\bullet\,$ Know where to look for quantum advantage
 - Smaller datasets
 - Quantum data...

Why

- Linking external knowledge to internal know-how
- Know where to look for quantum advantage
 - Smaller datasets
 - Quantum data...
- Bring value out of proof of concepts
 - Do I reduce the uncertainty about when performance is at breakeven and/or how much will be gained?

Why

- Linking external knowledge to internal know-how
- Know where to look for quantum advantage
 - Smaller datasets
 - Quantum data...
- Bring value out of proof of concepts
 - Do I reduce the uncertainty about when performance is at breakeven and/or how much will be gained?

How

• Public events (Hackathons) allow to have a quick look at the field

Why

- Linking external knowledge to internal know-how
- Know where to look for quantum advantage
 - Smaller datasets
 - Quantum data...
- Bring value out of proof of concepts
 - Do I reduce the uncertainty about when performance is at breakeven and/or how much will be gained?

- Public events (Hackathons) allow to have a quick look at the field
- Small dedicated team able to interact with academia and/or service providers

Why

- Linking external knowledge to internal know-how
- Know where to look for quantum advantage
 - Smaller datasets
 - Quantum data...
- Bring value out of proof of concepts
 - Do I reduce the uncertainty about when performance is at breakeven and/or how much will be gained?

- Public events (Hackathons) allow to have a quick look at the field
- Small dedicated team able to interact with academia and/or service providers
- Find partners that are aligned with your interests

Why

- Linking external knowledge to internal know-how
- Know where to look for quantum advantage
 - Smaller datasets
 - Quantum data...
- Bring value out of proof of concepts
 - Do I reduce the uncertainty about when performance is at breakeven and/or how much will be gained?

- Public events (Hackathons) allow to have a quick look at the field
- Small dedicated team able to interact with academia and/or service providers
- Find partners that are aligned with your interests
- Value is created with longer projects

Why

- It's a long journey: difficult to answer to the question "how much can be gained?"
 - Understanding where improvements can be made in existing workflows
 - Understanding what are the requirements on the machines to bring concrete advantage

Why

- It's a long journey: difficult to answer to the question "how much can be gained?"
 - Understanding where improvements can be made in existing workflows
 - Understanding what are the requirements on the machines to bring concrete advantage

- Look for algorithmic choices and improvements in existing workflows
 - expensive but might bring gains before QC / identify building blocks that could be possibly be replaced by Q Algorithms

Why

- It's a long journey: difficult to answer to the question "how much can be gained?"
 - Understanding where improvements can be made in existing workflows
 - Understanding what are the requirements on the machines to bring concrete advantage

- Look for algorithmic choices and improvements in existing workflows
 - expensive but might bring gains before QC / identify building blocks that could be possibly be replaced by Q Algorithms
- Go for PoC, simulations, analytic x simulations to get an sense of required parameter sets

Short focus on making the best out of PoCs

Methodology

- 1. Survey existing approaches
- 2. Which ones are the most profitables for the program
- 3. Adapt to real hardware
- 4. Study requirements for obtaining the required functionality / advantage

Methodology

- 1. Survey existing approaches
- 2. Which ones are the most profitables for the program
- 3. Adapt to real hardware
- 4. Study requirements for obtaining the required functionality / advantage

Practice

1. Applications for quantum networks

Methodology

- 1. Survey existing approaches
- 2. Which ones are the most profitables for the program
- 3. Adapt to real hardware
- 4. Study requirements for obtaining the required functionality / advantage

Practice

- 1. Applications for quantum networks
- 2. Deconstruction and routines analysis

Methodology

- 1. Survey existing approaches
- 2. Which ones are the most profitables for the program
- 3. Adapt to real hardware
- 4. Study requirements for obtaining the required functionality / advantage

Practice

- 1. Applications for quantum networks
- 2. Deconstruction and routines analysis
- 3. Complete protocol rewriting

Methodology

- 1. Survey existing approaches
- 2. Which ones are the most profitables for the program
- 3. Adapt to real hardware
- 4. Study requirements for obtaining the required functionality / advantage

Practice

- 1. Applications for quantum networks
- 2. Deconstruction and routines analysis
- 3. Complete protocol rewriting
- Overhead analysis and requirements to get functionning PoC

When to start?

Thank you

