

HQI: HPC & QC integrated platform

A HYBRID HPC-QC APPROACH

Coupling supercomputers with QPUs

- Quantum computing is an accelerator pour for targeted HPC/Al applications and algorithms that will be offloaded to the QPU
- A workload evaluation that must be adapted on existing middleware environments
- A well-known access procedure

A **central platform** to build programming environments, develop and provide access to scalable and interconnected quantum computers as well as applications.

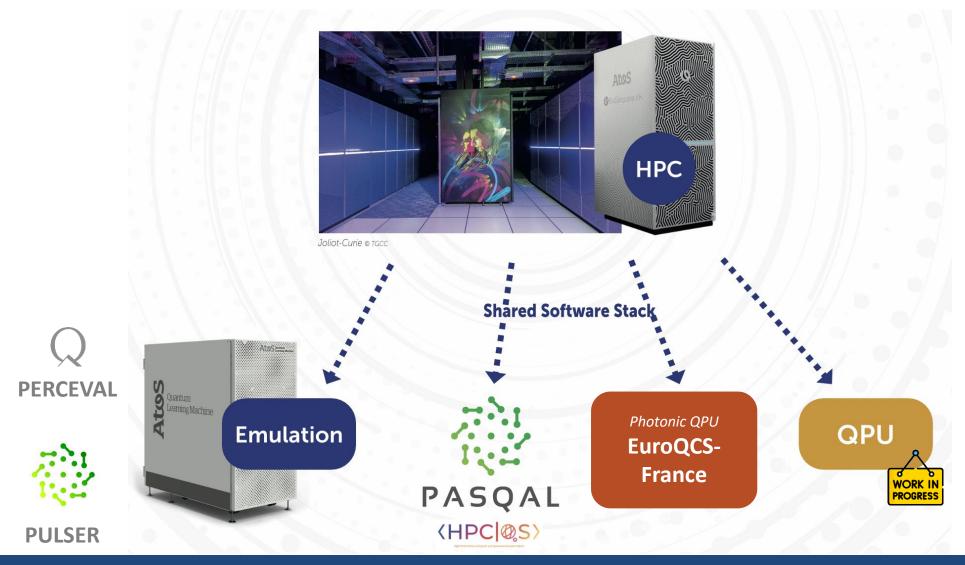
GENCI's Joliot-Curie supercomputer operated at TGCC/CEA

QUANTUM COMPUTING: HQI INITIATIVE

Scope: 2022-2026

A production hybrid HPC-QC platform and

An academic and industrial research programme



Procurement and deployment of QC platforms	te calcul internal au service de la connaissance	<u>cea</u>
Academic research	<u>cea</u> (36,0 M€)	Atos crs
Industrial research		
Dissemination and end-user community support		Le calcul internal au service de la connaissance

HQI: PROCUREMENT AND DEPLOYMENT OF QC PLATFORMS

A scalable and open platform

OVERVIEW OF THE HQI ENVIRONMENT

Description of the HQI services

PROGRAMMING

BACK-ENDS

Tutorials

Documentation

Classical

Hardware-agnostic

Perceval

QPU emulators

Quantum Emulation

Planned (HPC|@S)

Remote Photonic Photonic OPU

Installation ASQAL Photonic OPU

Quantum Computing

Other QPUs

Planned

Planned

Digital

Ouantum

Quantum Computing

HPC/QC SW INTEGRATION

HQI Software stack

Main stack is based on Atos/QLM software

- To work on quantum algorithms (HQI integration)
 - myQLM runs on supercomputer
 - Offload quantum runtime to QLM appliance to QPUs or to QPUs directly
 - Jupyter notebooks or command line interface
 - QPU emulators run on supercomputer
- To work on hybrid computing in applications (HQI R&D)
 - Integration of quantum runtime in HPC environment
 - Use of API or compiler directive

Direct access to vendor stack is available

- Allow low level interaction with QPUs
- For advance R&D purpose

HPC/QC QPU INTEGRATION

Three levels of integration

Weak coupling

- A step within a processing workflow or an simulation/data analysis run
- Uses the computing centre network
- Requires ability to share the QPU between runs (QPUs do not use time sharing)
- Only solution if the QPU is very expensive

Medium coupling

- A step within a processing workflow or an simulation/data analysis run
- A new supercomputer local resource
- Uses the supercomputer network
- Allow allocation of a group of QPUs to classic processing

Strong coupling

- Like GPU-type accelerators, can by used in each compute loop
- Uses either compute node buses or the supercomputer network
- Requires high density, low cost QPUs
- Need to put CPU in cryostat?

QC are separate systems
HQI initial setup

QC are racks in a supercomputer
HQI target

QC are cards on mother boards

HQI dream

QC COMPUTING CENTRE INTEGRATION

A new computer room in CEA/TGCC

Quantum Computers are simple to integrate but bring new constraints

- (+) Few electrical power (hundreds of kW)
- (+) Few cooling (cryostat are embedded)
- (-) Qubit quantum state need to be protected
 - Required few dust
 - Required few vibrations
 - Required few electromagnetic radiations
 - Required clean/stable electrical power

Classical Computer

- Room air cooling systems generate a lot of dust
- Cooling systems generate a lot of vibrations (pumps, fans)
- Computer power supply supports noisy current
- Large computers with CPU/GPU generate electrical variation (visible on led lighting)

CEA/TGCC strategy is to setup a dedicated computer room in existing facility

- Close to main computer room
- Compatible with short term usage (weak connection)

HQI: ACADEMIC AND INDUSTRIAL RESEARCH

Overview

- Design and realized a converged hybrid Classic/Quantum computer
 - Based on Atos QLM and Atos XH3000 SuperComputer
 - Emulators
 - LSQ Distributed Heterogeneous Programming
- Improve the software-programming environment (tools for developers)

Applications

- Algorithms for Optimization, Machine Learning, Cryptanalysis
- Quantum simulation of nuclear many-body systems, Quantum computing applied to theoretical and quantum chemistry, Quantum many-body dynamics and entanglement, Quantum simulations of strongly correlated materials, Partial Differential Equation

Exploration

- Noise characterization and mitigation
- · Quantum links for computing

HQI: DISSEMINATION AND END-USER COMMUNITY SUPPORT

Helping communities get their hands on the platform

Choice of a sovereign Cloud Services Provider to provide access to the platform

Community platforms - websites, wiki, Slack forum

Organization of dissemination events

Development of International relationships

Setting up an HQI platform end-user high-level support team

Development of **use cases** through national and international extensions of the Quantum Pack initiative

Creation of a network of excellence centers: **Houses of Quantum**

HQI France

@HQI_France

Thank you

For more information on the HQI initiative, please contact:

Jacques-Charles Lafoucriere

HQI Programme Manager

jacques-charles.lafoucriere@cea.fr