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Evolution of computing...
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Exponential increase of performances in 33 years

A

Production car of 1985 —_— 27 times the speed of light
Lamborghini Countach 5000QV X 100 000 000 Warp 3 ?
Max speed 300 Km/h Star Trek Enterprise

(Year: about 2290)

Peta = 101> = million of milliard




Exponential increase of performances in 33 years

Cray 2 — 1985 ’

Summit — 2018
2 GFLOPS (2x10° FLOPS) X 100 000 000 200 PFLOPS (2x10'7 FLOPS)

200 kW — 9 783 kW
X49

Energy efficiency x 2 000 000 in 33 years

Peta = 101> = million of milliard

L WU
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Still increasing playing on specialization, architecture, data coding, ...

Even better increase for the Al accelerators

Exponential increase of performances in 33 years

1000X Al Compute in 8 Years

Blackwell
20,000 TFLOPS
FP4

Hopper .-
4,000 TFLOPS Il,.i'
Ampere s J
_ ﬁ olta 620 TFL f_,.-"'"-
Cray 2 — 1985 5 Summit — 2018 1gpra;fglp5 laﬂuTl!LGPS BFITEI;Fglpﬁi,.;""
2 GFLOPS (2x10° FLOPS) x 100 000 000 200 PFLOPS (2x10'7 FLOPS) FP16 P16~
in 33 years 2016 2017 2020

From Nvidia, J. Huang keynote 2024
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>4 Mono-core
»4 architecture for
1 single thread
performance

NIC

Increasing frequency
(time)

End of Dennard’s scaling

Heterogeneous

Evolutlon of processing archltectures

Reticule size wall

architecture for Heterogeneous
energy efficiency integration for cost
Many-core efficiency !
architecture for -=
arallelism M NIC
P NIC ¢
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~2006

(Network Interéonnect)

Increasing parallelism
( ~ 2D space)

~2016
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Increasing specialization
( architecture)

Disaggregated SoC w/
functional chiplets

= Flexibility
= Perf scalability
Chiplet based

architecture for higher density\

BXADT

=<

Compute chiplet

|O chiplet
Chiplet
Ok invades High
Performance
Processors

1 Compute chiplet
i\ Switch chiplet

hermal chiplet/

Slide originally from Denis Dutoit (CEA)

-
Computing fabric No more
( approximate computing?) electrons?



A complete computing system in a package

Technology and architecture co-optimization towards a modular approach for
heterogeneous integration

Architecture
Technology

* Multi-chiplets:
/ « Advanced technology node

Heterogeneous (size, technology

* Generic Computing
 Low power accelerator

 Chassis die with

peripherals, 10s, memory node, pitch)
and communication  Face down
infrastructure e No TSV

Full digital compute chiplet
Hybrid bonding:
* Die-to-wafer, Face-to-face
Base die:
» Mature technology node
« TSVs for power delivery and I0s
* Face-up
Package



PHOTONIC INTERPOSER: OPTICAL COMMUNICATION ON INTERPOSER

=) Aims to valida
interposer

96 cores p
interposer
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Few points for innovative and new hardware

New paradigms are stimulating interdisciplinary research (materials, information theory, complexity etc.):

= quantum computing (and impact on algorithms)
= Accelerators not using “bits”

" neuromorphic computing

= Information coded in time (“spikes”) X1 Wl
= Using physical phenomenon to compute [| | | | ] BAYAYAYA
" |sing based accelerators :
= Computing using photons X” [| | | |J |
New technologies are emerging: W
N

= memory e.g. MRAM, spintronics
= processors e.g. stacked nanosheet FET (GAA), photonics for computing
= organic and flexible electronics

Innovative architectures, often driven by the performance demands of data-intensive computing, tailored to

the application:
= e.g. In-memory computing
= e.g. 3D stacking
= e.g. using adapted precision (accuracy)

= Programmability of the new approaches? Ease of use for the developers?

Stacked nanosheet FET

The gate completely surrounds the
channel regions to give even better
controlthanthe FinFET.

L WO
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Changing computing paradigm: from "precise"” to « approximate » computing

Until now, computers and other computational systems have been used for reproducible, relatively
precise computation (with the exception of errors caused by floating-point representation =>
Extended Precision Computation, CEA's VXP coprocessor, - and overflows (integer computation)).




A Computing Accelerator Designed for High Precision Computation (up to 512-bit mantissa)

OVERVIEW
l . i _ _ . I FIRST RESULTS ON AN ILLUSTRATIVE EXAMPLE
The variable extended precision processor (VXP) is a dedicated hardware/software accelerator suitable
for the resolution of large ill-conditioned systems of equations. Its tunable, dynamic precision Modern linear algebra kernels (solvers, eigensolvers...) are highly sensitive to

speeds up convergence and improves memory usage and computational efficiency. numerical pitfalls (cancellation, absorption...) which are a source of computational

instability. This may alter or even occult some physical phenomena, whereas

B BENEFIT : HIGHER PRECISION FOR IMPROVED EFFICIENCY augmenting precision restores the numerical consistency of the model.
Increased precision greatly reduces rounding errors, and improves By modelling a classical laminar flow problem over a cavity with 192 bits of
the computing efficiency of algebraic computations at the compute mantissa, turbulence details appear whereas they are lost in the noise with double

node level. Certain problems do not even converge with standard
double precision.

The VXP accelerator supports arithmetic operations in
hardware with up to 512 bits of mantissa. Its dynamic
precision is fine grain tunable for optimal use of near

processor memory. Computing Infrastructure Il
(Supernodes) 0

precision (53 bits of mantissa).

1

00 @ Double precision

1500 4

1400 4

B KEY FEATURES
The VXP is a complete hardware and software solution with:

0 0.5 1 15 2
1300 +

[terations

Difference in Laminar Flow between Solutions

1200 +

. , ] ~ /“A with 53- and 192-bit Precision.
Ded|catedl hardware. | o eSS
v' Silicon proven in GF 22nm FDX and new design in = N——— In this application, the variable extended precision sl *
TSMC 7nm (European Processor Initiative) == ~ processor (VXP) allows us to :

v" FPGAboard for early access /

T T T T T T T T T
50 75 100 125 150 175 200 225 250

Precision

- model non-observable variations in standard precision.
= Software stack : Compute Node - reduce the number of iterations until convergence by 40%

Number of Required lterations

v" C-like programming environment (compiler and assembler) versus Numeric Precision (bits of mantissa)

v' Library for mathematic and low-level algebraic subroutines Host
v" Runtime environment processor l HOW DOES IT WORK ?
I APPLICATIONS [ Application ]
. . . A conventional scientific application can smoothly be integrated
Improve the efficiency of computing for algebraic solvers and with the VXP unit, just as a plug-in for scientific software [ Domain Specific library ]
eigensolvers : applications. Whenever the compute node host cannot achieve e e
: [ Ver & algoritnms interrace
. Scientific computing : computational physics and chemistry, ° the expected accuracy with standard precision, the VXP takes . g - [

electronic simulation, structural computation, climate models, b + o over and continues with extended precision until the error RS &
weather prediction, fluid dynamics. rocessor + Accelerator(s) tolerance constraint is met. ALGORITHMS

= Model order reduction : learning for Al, large dynamic systems. In the current version, the VXP is embedded as 2 functional unit
in a 64-bit RISC-V processor pipeline. The VXP extends the

standard RISC-V instruction set with basic arithmetic operations
and specific instructions in variable precision.
The VXP relies on the RTEMS software for communication with

the host and global synchronization. [ Auxiliary support Iibraﬂ d
= See https://list.cea.fr/en/vxp-extended-precision-processor/ T e

uoISIoaid 3|qeLep

300}S9OPY - ISUOW @ : JIPaI0 0joud



o T oo . T ek, 2RI R WS D T
| Changing computing paradigm: from "precise" to « approximate » computing

| ;g Until now, computers and other computational systems have been used for reproducible, relatively
@ precise computation (with the exception of errors caused by floating-point representation => Extended

Precision Computation, CEA's VXP coprocessor, - and overflows (integer computation)).

L

¥ + The "new" generation of computational approaches make computing more “approximate” :
— Neural network-based approaches, including generative Al (hallucinations, ...), low-precision coding (FP4 [1, 3, 0])

— Ising-based coprocessors (Fujitsu Digital Annealer, Hitachi machine, Dwave): find a minimum of a function, not
necessarily the global minimum => Quadratic unconstrained binary optimization => optimization problems.

— Quantum computing (stochastic measurement of results)

* We are going from (parallel) Turing machines* (1936) to universal approximators of Mc Culloch &
Pitts (1943)*

 Tomorrow's systems will have to combine the two** types in "loop”, “reinforcement” systems

*Turing, 1942: “Any form of mathematical reasoning can be made by a machine”.
* Mc Culloch & Pitts, 1943, A finite size neural network can approximate any function to a desired degree of precision

** Like in « Thinking, Fast and Slow » a 2011 popular science book by psychologist Daniel Kahneman



https://en.wikipedia.org/wiki/Daniel_Kahneman

The “boom” of Artificial Intelligence
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Hype Cycle for Artificial Intelligence, 2023 "

Smart Robots

Responsible Al
Meuromorphic Computing
Prompt Engineering

Generative Al
[

Foundation
Models

Artificial Ganeral Intelligance Synthetic Data
Decision Intalligancea
Al TRISM

Operational Al Systems

MadelOps

Composite Al

Data-Centric Al
() EdgeAl Computer

‘u’i&lﬂ'ﬁ ) r/,—\'"_

Al Enginesring

Al Simulation

Causal Al

Expectations

Cloud Al

Sarvices ' Data Labeling

Knowledge Graphs and Annotation

Meuro-Symbolic Al

Multiagent Systems Intelligent Applications

Autonomous Vehicles
Al Maker and Teaching Kits

First-Principles Al
Automatic Systams

Peak of
Innovation Inflated Trough of Slope of Plateau of
Trigger Expectations Disillusionment Enlightenment Productivity
B
[ ]
Time
Plateau will be reachead:
() less than 2 years @ Z2to5years @ 5to10 years A more than 10 years (¥) obsolete before plateau As of July 2023

gartner.com

Source: Gartner Ga rtner
@ 2023 Gartner, Ing, and/or its affiliates, All rights reserved, 2079794 &
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Smaller LLM models get more powerful, ready for on-premise processing

. .. Arena . . . Knowledge
w Model 4 Elo & pul 95% CI A w Votes 4+ Organization 4 License A Cutoff
GPT-4-8314 1186 +3/-3 53597 OpenAl Proprietary 2021/9
Qwen-Max-0428 1184 +4/-4 21973 Alibaba Proprietary Unknown
GLM-4-8116 1184 +6/-6 7585 Zhipu Al Proprietary Unknown
Claude 3 Haiku 1178 +4/-2 82998 Anthropic Proprietary 2023/8
Qwenl.5-110B-Chat 1164 +4/-4 19369 Alibaba Qianwen LICENSE 2024/4
GPT-4-0613 1161 +3/-3 75182 OpenAl Proprietary 2021/9
Reka-Flash-21B-online - Proprietary
Mistral-Large-2402 1156 +3/-3 53756 Mistral Proprietary Unknown
Llama-3-8b-Instruct 1153 +2/-2 79064 Meta Llama 3 Community 2023/3
Claude-1 1149 +5/-4 21216 Anthropic Proprietary Unknown
Reka-Flash-21B 1148 +3/-4 23182 Reka AI Proprietary 2023/11
Mistral Medium 1148 +3/-3 35600 Mistral Proprietary Unknown
Command R 1147 +4/-3 44680 Cohere CC-BY-NC-4.0 2024/3
Qwenl.5-72B-Chat 1147 +3/-3 38871 Alibaba Qianwen LICENSE 2024/2
Mixtral-8x22b-Instruct-v0.1 1146 +4/-3 34799 Mistral Apache 2.0 2024/4
Claude-2.0 1131 +5/-5 12789 Anthropic Proprietary Unknown
Geminli Pro (Dev API) 1131 +6/-5 18839 Google Proprietary 2023/4

From: https://chat.Imsys.org/?leaderboard on 24/05/29
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All Big Core CPU

World's first flagship smartphone chip to use
all big cores for extreme performance.

« 4X Cortex-X4 CPU up to 3.250Hz

« 4¥ Cortex-AT20CPU up to 2.00Hz

= 15% incCrease in single-Core performance
« J0% increase in multi-core performance

Advantages in Power Efficiency

Precise CPU management for superior
power efficiency.

« Upto33% multi-core power saving vs previous
genCPU
« Fgen TSMC 4nm chip production

2™ gen thermally optimized IC design and package

Cenerative Al Engine with Private,
Personalized Al

New 7" Gen APU brings hardware-accelerated
Generative Al into smartphones.

« Bx faster transformer-based generative Al

L E':-: !’.La'-_.'.l.-:r |r'1{=!.;e,lr anid |'|,I;,Z-.'11I:'|;:.' point compute
improvement

= 45% more power efficient

« Upto 33 billion parameters

« Exclusive hardware-accelerated memory

= First to support on-device LoRA Fusion

5G

MediaTek

Dimensity 9300

EN

Superior Security

Introducing a user privacy-focused security
design and secure smartphone ecosystem.

= Secure Processor + HWRol
= MNew Arm MIE lechnology

« the APU 790 can run a 7 billion parameter LLM at 20
tokens per second, which is fast enough for real-time use.

3 can run a 10 billion parameter LLM at almost 15 tokens
per second, which seems fairly comparable. The
Dimensity 9300 can extend this to run a 13 billion LLM
within 16GB of RAM, right up to 33 billion parameters
with 24GB RAM, albeit with a much slower 3-4 tokens per
second processing rate. »*

« the APU 790 supports INT4 (A16W4) to run smaller
quantized models and a dedicated hardware memory

Noromnro i } a \odi ~lc’

example, a 13GB INT8 model can be pre-compressed to just
5GB to fit into RAM and then decompressed in hardware

perform LoRA low-rank adaptation

From https://www.mediatek.com/products/smartphones-2/mediatek-dimensity-9300

November 6th’ 2023 From https://www.androidauthority.com/mediatek-dimensity-9300-explained-3381678/

N
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Evolutlon of cbmptmg
Cloud computing =» Continuum of Computing

) 4 h [ . .« o h
Cloud computing Cognitive Cyber-Physical Systems Decentralized, D'Str,'bUted &
Embedded Intelligence
=
Raw Data Do processed Knowledge,
ﬂ Digital twins
e 2 & Serviges [
Analytics % c @
a 9
T © =
=
¢ @ H®
o o
(@] o, -
g g 5 =
8 |E ,;,:;.., &  Orchestration  Security ~ Digital Twin
P 5 £ Embedded o
& Intelligence 9 o
— ” u Pre-processing & Natural programming =
= ’ & Modeling |
a ] amn Simple - Edge
o ’-.'{\f _- dl Trusted platform
f f __h _,,.J‘"
\_ . _ L J
Current model Edge Al Federation of Connected to
distributed Smart & the physical
Trusted Orchestrators world

Slide originally from Denis Dutoit (CEA)



How to have efficient Al devices at the edge?
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NEURAL NETWORKS HARDWARE

ACCELERATORS
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Efficient Computing @Edge:
Examples of Al Circuits & Architectures

Transformers &
multimodality
Smart Sensors

PPR
CNN )
Foundation - NSTITUT
Model of
BUMBLEBEE

PEUR Attention based Al Circuit Architecture

, Raptor HW/SW IP
Gesture detection ED28nm
130nm + OxRAM + PMUT,
S - [ j’ MOSAIC
I CIaSS|f|catlo Spiking SNN Modular Al systems composed
T B A

of heterogeneous components

et

Neurl

i Ut Srriim Feature Extractor (HD images)
BNN | _SI_DIRIT LARGO GF22nm, OxRAM
Digital popcount Spiking SNN 28nm. OxRAM
130nm, OXRAM 130nm, OxRAM ’



Zoom on PNEURO: A vision/audio Al accelerator IP
Bringing Al computing into energy constrained sensors

3

C

embeddedworidzoaz

s A
. el S —T= T
o. I/l
|_®_| X L @ g m--
Object Object Image Energy Fully- Scalable
L classification detection segmentation efficient prog. ,
/ N
O An efficient and configurable tiny ML accelerator
O Designed to execute Deep Neural Network (Pre/post-
processing phases, CNN)
O Scalable thanks to a clustered SIMD (Single Instruction
Multiple Data) architecture
O Energy efficient thanks to strong coupling between PE
and memory (NMC)

N y
s A
IP SDK ISS
Hardware IP Programming Model for virtual
_ user interface programming )

Exhibition&Conference
il's & amarter workd
SYSTEM INTEGRATION PNEURO CLUSTER
INSTRUCTION ADDRESS
MEMORY GENERATORS |
RISCV Hast I I
{HDST] S}l‘!f{"m
Bus
CLUSTER
COMNTROLLER
PNE URD = = I | Adareds bus
IP 1 ' l v v
MEURAL NELURAL
L2 COMPUTE +— +—+ COMPUTE
MEMDRY BLOCK ; :: ; g BLOCK
System i§ iE
Bus
PE ARCHITECTURE NEURAL COMPUTE BLOCK
ROUTING/DATA TRANSFORMATION addres
b | e

ALU

MUL

GAIARCSFLAGS

—

SATURATION &
LINEAR RECTIFIER

I

I

ACCUMULATOR

MULTI-BANKED
SRAM




Tiny Raptor/P-Neuro - Benchmark results
DiZlLPHIN

Fully programmable Neural Processing Unit, designed to execute Deep Neural Networks DESIGN
(DNN) in an energy-efficient way thanks to Near-Memory Computing architecture

KeyWord Spotting results Visual Wake Words results

Data: Google Speech Commands Model: DS-CNN Accuracy: 90% (top1) Data: Visual Wake Words Dataset Model: Mobilenetvl (0.25x) Accuracy: 80% (top1)

B Latoncsy inma [ Bnengy In ) B Latency inms ] Energy in ud

Latency in ms Energy in uJ

Latency in ms Energy in ul i ‘ ' S AL Bl
Soamrce 8 P, O
Source 1
Soumrce 7
o Source 8
Source 3 Source T L R
Source 2 |
oL L embeddedwaorid=zo=z=Bax
Source 4 Source 3 Esnanmons Contprance
Source 13 Source 4
Soqprce 9 Source 13
SOoEceE 6 SDI..II'CE &
Soamce 10
Source 9
Souce 5
Source 10
Soamce 12

©,

L https://mlcommons.org/en/inference-tiny-07/

@ embeddedworld=zo=2

LS
..............
FEEEE b Tl =1

.......

Exhibition&Conference
. it 5 @ smarter world

@ Embedded World Award 2022 in the start-up category for Tiny Raptor



Tiny Raptor — Demonstration CamCube at CES 2023

CamCube '

Device-like demonstrator

TMmWw

processing
power budget




NeuroCorgi - A Feature Extraction Accelerator

= Key Idea : Dedicated hardware Feature Extraction Accelerator (FEA)

= Weights and topology of the network are frozen
= Fixed weights allows hardware optimization : MCM=Multi-Constant Multiplier
= Highly tuned quantization (4-bits, same accuracy as original FP32)

Target P

applications = 0 00w T T e s TS T E T s - ~ iﬁi-’f" 11‘ Classification
p - :’ Embedded Al computing platform | A B—
- == | HDimages 1 " : / .

'm' @30FPS : Feature Extractor Accelerator (FEA) — Programmable |

@ > : Fixed opology and weights / Al acceleraior |

l (NeuroCorgi_core) ——2 | Headsfor differentAl tasks |

I |

I I

—_— ~_ Semantic
~ Segmentation
\ | F \
/

2] Objectdetection

= Same FEA used for different tasks : Classification, Semantic Segmentation, Object Detection
= With transfer learning (TL) > same features can be used for completely different applications
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Computing Artificial Intelligence™-
at the edge with x1000 less energy

aFd 3 .
.

-
14 &

Backbone
(features extractor)

Use Case 3.1:
Drones/USV

Use Case 2.1:
Autonomous
Weeding System

Use Case 2.2:
Tomato pests and
diseases forecast

Use Case 3.2:
Underwater Acoust
Signal Classification

Use Case 3.3:

3D Object Detection
and Classification of
Road Users



NeuroCorgi - Circuit Performance

= Based on MobileNetV1 topology trained with ImageNet (27 CNN layers) [1]

Frame Rate 30 FPS
Image Format Up to 1280x720 pixels

Technology GF 22FDX

FEA Area 4.45 mm?

Main Clock 59 MHz

Power <100 MW |
Latency (1280x720) <10 msec B

I. Miro-Panades et al., "Meeting the Latency and Energy Constraints on Timing-critical Edge-AI Systems," book Embedded Artificial Intelligence, River

Publi

shers,

2023.



INDEPENDANT DEEP LEARNING
PLATFORM FOR EMBEDDED Al

aldge




Deep Learning Platform forEmbedded  ClIC/OC

Const L A Complete Toolchain from NN modeling
onsidered criteria : :
» Applicative performance metrics to optimized deployment on Hardware

*Memory requirement
@ Central Processing
_> N
Unit

e Computational complexity
Graphic

Processing Unit

Optimization

Databases

Quantization Aware Field Programmable

Code . . Gate Array
Generation

Training

Trained
DNN

Modeling Learning Post-training

Data
conditioning

Application Specific
Integrated Circuit

guantization

Hardware
Design
1 to 8 bit integers + rescaling 2 to 8 bit integers + rescaling
* SotA QaT methods (SAT, LSQ) *Based on dataset distribution
* Integration of quantization * Quantized applicative performance
operators in learning process metrics validation



Deep Learning Platform for Embedded cudge

.".“ /’\" {/3
<o ) N =
 —"
oo’ C AV
Modelling Optimization Deployment
Interoperable Powerful
data flow graph graph manipulation
m %L% Stripe2 Conv2
\ Stripe3 Ll Conv3 j
State of the art models : CNN Tiling, Graph search and
RNN, GAN, Attention replace engine

@ ONNX import



Deep Learning Platform for Embedded Cl[dge

s e
-4 ) ) °— H—-
.s.f‘ @ \./_._;\\?

Post Training Optimization Quantization Aware Robust approaches for
Training learning and inference
W S P T | N
. B ===, . a-@Fat
[ o g ] .
e ekl = el (el
Quantization, Pruning, Innovative SotA QAT based on Adversarial attack, Incremental
Compression SAT and LSQ learning



Deep Learning Platform for Embedded

P
I :.-'.
o’

o,

Modelling

Robust approaches for

y #o)

Optimization

aidge

-0l 5
=
0—1%

Dep

loyment

learning and inference

Adversarial attack,
Incremental learning

Adversarial
Attack

Incremental
learning

o

/

STOP | I

Stop

noise

~

Combination of Sota Methods
without latency loss

Publication

An Embedded Continual Learning
System for Facial Emotion
Recognition

O. Antoni, M. Mainsant, C. Godin, M.
Mermillod, and M. Reyboz @ Demo
track ECML 2022



Deep Learning Platform for Embedded Gldge

) W) 4B

|

|

—

Deployment

Modelling

Optimization

Efficient cross code Code execution for

: g Hardware design
generation multiple hardware

MCU, CPU, GPU, NPU, ASIC, FPGA

by A3 Qi
etc ..

Generation engine based COTS and sovereign .
on template hardware targets Al-ASIC Neurocorgi




Deep Learning Platform for Embedded Qldge

Open source software platform for collaborative dynamic, (E CLIPSE
code transparency — hosted by Eclipse Foundation FOUNDATION

Modular and extensible framework
with minimal set of dependencies and
appropriate programming language (C++/Python)

Supporting multiple hardware targets
and envision heterogeneous architectures

Producing human readable code with ik | Generate | &&, | | e
unified representation wrt to the design D = o ﬁ




Zoom on optimized deployment

KDK entirely based on aidge (prev. N2D2)
* Datareuse >90%

* Tiny MLPerf benchmark results

e 32w and 10ms latency on Visual Wake Words
e 12w and 3,5ms latency on Mlcommons keywords

Exhibition&Conference

meedded World Award 2022

DIZLPHIN

PROCESSING ELEMENT
ARRAY & LOCAL SR8V H

* CEA’s specialized circuit for neural networks Fralll o

.--- :

TinyRAPTOR
Neural Network Al Accelerator

@ embeddedwurldaaa/

HW export: Tiny Raptor NPU

ﬁnvironment constrains
* High speed rolling at 20m/s

* Tiny defect (*“mm), low contrast
Solutions

* Data augmentation
e Fast neural network exploration
e Performance vs complexity tradeoff anal

kCurrentIy tested on production line

HW export: NVidia TensorRT GPU

Use case: metal coil defect detection

Qidge

A/Iulti precision quantization

* 8-bit, 4-bit, 1-bit

e 2x lower memory usage with 4-bit export
vs 8-bit (+10% inference latency)

* 1-bit export prototypes (+5% latency)

Mixed precision export
K * Best results with layer-wise precision optimization

HW export: STM32 MCU

/Urban detection algorithm optimization from 8 frames per \
second with Tensorflow to 25 FPS after export

HW export: NVidia TensorRT GPU

Usage case: urban detection
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