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SAFRAN AIRCRAFT ENGINES AT A GLANCE

COMMERCIAL
ENGINES
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SAFRAN AIRCRAFT ENGINES

OUR RANGE OF ENGINES FOR COMMERCIAL AVIATION

kY {} |

B737 B737 MAX B777 B747 A380
A320 A320NEO B777X A310/330
Cc919
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CFM®: A UNIQUE PARTNERSHIP IN AVIATION HISTORY

SAFRAN AIRCRAFT ENGINES &S SAFRAN
AND GE AEROSPACE

j 45 + years

OF SUCCESS

A 5 0/50 company

DESIGN, DEVELOPMENT,
PRODUCTION, SALES AND SUPPORT
OF CEFM56 AND LEAP ENGINES

No. 1

GLOBAL S
OF ENGIN

for mainline
commercial aircraft
(over 100 seats)

UPPLIER
ES

Over 680

CUSTOMERS
WORLDWIDE
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LEAP®: A NEW-GENERATION ENGINE — QUIETER AND MORE ENERGY EFFICIENT

@) AIRBUS (LooEING COMACN\E

LEAP-1A LEAP-1B LEAP-1C
Service entry: August 2016 Service entry: May 2017 Service entry: May 2023

PROVEN ENVIRONMENTAL BENEFITS IN OPERATION

- o, co2 EMISSIONS 4 52
15% to AND FUEL s B W
20% CONSUMPTION L 5

@ ﬁé&ENF!EFDluccﬁng ORDER BOOK OVER 30m OVER 160 70%

jous- FLIGHT PERATOR INGLE-AISLE
Compared to previous OVER10'000 €] (0] ORS SING

HOURS worldwide COMMERCIAL JETS

generation engines
ENGINES POWERED BY LEAP
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DECARBONIZATION
OF AVIATION

FUTURE ULTRA-EFFICIENT

ULTRA-ERECIS SINGLE-AISLE JET

ENGINE ARCHITECTURE

|
s>
SMARTER

SUSTAINABLE ENGINES
AVIATION FUELS AND SERVICES

s> 17

HYBRID AND ELECTRIC
PROPULSION

v In-flight data capture and
analysis

v Predictive maintenance
v Reduced consumption

Improved reliability

LOWER CO,
EMISSIONS WITH EACH
NEW GENERATION

ONGOING CONTRIBUTION
TO THE CLIMATE CHALLENGE

2016 2035
to20%

For a total of
60% reduction in CO, emissions

40 %
REDUCTION
SINCE 1982
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Chapter 1

Safran Aircraft Engines
PHM

(Prognostic & Health Monitoring)
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The LEAP aircraft engine

- & ST .
AN | ¢ | Wk

Birotor =
LP Rotor supported by 3 bearings 4000 rpm id; :
HP rotor supported by 2 bearings 20000 rpm
Diameter : 2m, lenght: 3,3m

Thrust : 110 kN

16000 parts, 2400 references, ...30 sensors

For more information :
http://www.safran-aircraft-engines.com/tab_app/howengineswork/index-en.htmi
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Engines maintenance
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Datalink
ACARS, PCMCIA, 3G...
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Ground Based Monitoring System

Ground transfer

CEOD

ACARS | ACARS
Message Message
4 4
N

First level Second level

Control Trends

| Trend analysis provides a |-

1

1 g i . : -
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PHM Story Board

Normal\ Unavailable . Normal
: y Normal behavior .
behavior aircraft behavior
Important Spare engine Engine repair
damages change

— Limited
damages
Normal Normal
behavior behavior
Repair : .
prepapration . .

Without HM
>
With HM

Early
detection

Normal

behavior
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Digital twin

An application integrate all documents
related to each engine SN, from design to
operations and repair.
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ow twin with
o i
o state-based
-2 mathematical
4= models!
o "
o i
o e

 SAFRAN



Chapter 2

Deep Survival

(Cumulative damage models)
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Deep survival

| I
/S/j_f \\////j_f
Flight, Flight,

Learning

T e T

o AL m

max

@ Then state categorization (again).

Continuous Damage Models

Evaluation of the engine current state

@ Using flight categorization and flights sequences
encoding.

@ Deep survival algorithms based on intrinsic state.

By =Wy n,B)

Inspection J
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Example 1: hot corrosion on turbine blades

Event

Engine | > Repair

Right censored observation = Inspection Inspection  Left truncated data

pitting

Construction of a neural exposure
: rate to wearing conditions.
A 4
mission

0"
D 0.008
-
-

0.006

weather

0.004

pollution

0.002

-
. ¥
P

A4

** Engine state

v dripping
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Detail of the recurrent neural network

Flight data +
context

Y

Recurrent Unit

Engine
state Notation
P Exposure
o o ) (T o) S
— X, —>GRU =
‘ 2 T =7 A g Gated
‘ === h, Xz —>‘ fg f—— 4>}GRU[ Recurrent
| re— = Unit
X3 —>(GRU ‘ —— Instantaneous s
hy | | X Data
i 2) | X% — fo —— exposure X number i
vector Hidd
iaaen
- hi state i
; ‘ P V;
— -
— Xi —>{eRU ‘ - = - - @
‘ — h; ;X.,,‘—>[ to ’ Viey 4.‘ V=ZWHr=max(VH CD.F H P(X1y...,Xn)
X, 1—>GRU — =t : - e
= Y= ) Vied Cumulative Event
ﬁq Xiiz _"{ 10_’_1_' E’::%%snutre distribution probability
- function
= : S Fiability
b)) | Xa| — |
‘ nt | %o 1 0 (Weibull
L x, —»leru Exposure
‘ — rate
Neural
e Gated network
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Results on hot corrosion

1.0 1

0.8 1

0.6

0.4 +

predicted probability

0.2

0.0

True Positive Rate

I non corroded
[ corroded
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= Roc curve

0.4 0.6
False Positive Rate
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Example 2: monitoring of the general wear of an engine

We have a lots of input data capitalized in a big vector Z, for each flight t.
> Data coming from any phase of each flight,

@ There is two kind of data: context and engine measurements. From the vector Z, we extract a part X, to suppress all
engine measurements, except pilot command which is clearly part of the context.

mission weather pollution Parameter Description

TAT lxternal temperature
/ Altitude Altitude
Context Mach number | Instant speed
X\

Ground Speed | speed with respect to the ground
N2 Core speed

-

Z.=| E Pilot Coramand 125 Compressor Inlet Temperature
t t T Fxhaust Gas Temperature
Yt E N1 Fal speed
t PS3 Compressor Discharge Pressure
Engine features T3 Compressor Discharge Temperature
T12 Inlet temperature
P12 Inlet Total Pressure
Yt Fuel Flow Fuel flow
Target VBV Position | Variable Bleed Valve Position
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Stochastic output that manage different modes

Lm0

Cluster 2

Number m of clusters

Englne [

Cluster 1
Cluster 3

pt(x) — Z T[t']N(,th ) O_t’])

I

Flight ¢ Probability of cluster j
for engine i at flight ¢

Different actions can explain the behaviour observed:
# progressive wear due to the last mission

¢ but also interventions on the engine which can cause sudden changes in the measurements.

Therefore, we are looking for a stochastic output that will sum up all these possibilities.
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A model that uses two attention layers

1. Z;: complete data for flight number t.
2. X data for flight number t without engine features.
3. hy, ¢y hidden state and cell state.

Long term attention weights

=,

i )
‘ . O . (s ]—P?—r State context vector
|8 A

[

-
S

| Dense Metwork

* L e M
* O . Oy

"M ... T
gaussian mixture model

LE 2]
hy hy P -1 hy
LSTM LA A LSTM LSTM
o €1 e t-1 Cy
Zy Zy 1 Zy Xipg —>»
Two attention layers — ‘
moderate the long term
and short term memories L Z 3
Short term attention .
i ﬂ QOO .- ]—v Flight context vector ————— |
L

P

parameters.
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A short reminder of the attention mechanism

Gradient descent
¢ ADAM optimizer

@ Based on negative log-likelihood
minimization

4 With dropout

¢ Implemented in Pytorch

Attention mechanism

@ Short-term memory calibrated by a neural

network
OJS_‘t = (I’VQ)’O‘ (Wl {XS,XJ + ‘wo)
B exp(ast)
O‘fsi - t—l .
> et €XP(art) t—1
Cr(t) = ) awZ,
s=t,

4 Long-term memory by similarity

bst = sim (hs, hy—1).

exp(bs.t)
6S,t - t—1 4

Z_?,:tb exp(by¢)

t—1
Cs (t) - Z _Bs,ths

s=ty
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Net gain compare to classical model without memory

1,400
FIFbF neural model
1,200 - Il custom model -
The goal of this
comparison is to 1.000 |- i
measure the effect ' 30°C
of memory o)
= 800 | .
£
CLE 600 .
=
400 - 20°C
200
10°C

0

01 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22

Engine number
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Delta Temperature (°C)

EGT of each engine compared to is state new

20

15

10 1

L
[ ]
T
0

T T T T
500 1000 1500 2000

Cycles Since New

Shroud consumption Repair

201

10 1

-10 4

T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500

Cycles Since New

Sudden wear
|

T T T T T T
0 500 1000 1500 2000 2500 3000

Cycles Since New
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Mean of 10000 flight simulations

Temperature (°C)

770 1

760

750 4

740 A

730 A

Wear

Repair

500 1000 1500

Cycles Since New

2000

Temperature (°C)

765 4

760 A

750 1

745 1

740 4

730 A

500

1000 1500 2000 2500

Cycles Since New

3000 3500

We use the model to simulate engine measurements from 10000 different flights contexts.
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Chapter 3

Wear
categorization

(Flight data generation)
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Motivation

Over the course of the aircraft's missions, the model of the digital twin is refined and

increases in precision.

Physical t
@-

V; : Flighti
D; : Digital twin after flight i
E; : Wear state after flight i

B

space 7!
1
~@- % :
CEOD ‘@\
CEOD fEEaa,
s CEODl
Virtual L D, CEOD
space D D3
W s “ : Dt
E - :
' E, g
CEOD: 5
Continuous Engine Operational Data E;
Evolution of engine wear flight after flight E;
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Conditional Generative Adversarial Network (CGAN)

CGAN Architecture
Données
réelles
Bruit
@ Condition
— Generateur @
@

Condition

Classification
Binaire

Discriminateur

Données
générées

mgn %]Ez'\-p, [(D(G(z,y),y) - 1)2]

min < By, [(D06Y) = 1] + 3Eay, [(D(G(2,),3)))

MIRZA, Mehdi et OSINDERO, Simon. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014.
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Transformer-based Generator and Discriminator

O Segmentation of flight data into three phases: before, Context Biicoder

during and after cruise.

Dropout |
Wl

O  Division of the sequences into discrete windows of 300
time steps (5min).

O Carry out the generation process sequentially for each
window: the generation of a window takes into account

Generated signals
G(l;, !l)

Conv Layer
t

Adjustment Encoder

* x Adjustment Encoder depth

Adjustment Encoder

| Dropout |
DEopout

Adjustment
Encoder

Real / Fake
Binary Classifier
| Linear Transform |

| Layer Norm |

00 ‘,tv[,][TH
[ARNARAI

Transformer Encoder

* x Discriminator depth

Transformer Encoder

Patch embedding ( + ~———

T Position encoding

+ j—_—

Linear Transform  Classification token

i
W" Temporal Patches

Linear Transform
t

Yy | Context

1
G 2

the previously generated window. Dropout
¥
Multi-Head
Self-Attention
A==p—p
Layer Norm
. Embedded Tokens
Altitude Multi-Head
40000 Attention
i
35000 [ Layer Norm
30000 Context Encoder a
» * =
56666 ¢ X Encoder depth Dropout
4 - Context Encoder P
PV BN Before Cruise Cruise . Multi-Head
£9 Self-Attention
15000 Linesr Trassforn_ Poidon encoding T
10000 B, (- i
3 —C
5000 W Linear Transform | Position encoding|
0 Linear Transform 1
. o 2 R —— JLI.. Ah
0 1000 2000 3000 4000 5000 6000 Context | y 2 | Noise t
G(z¢-1,¥1-1)

Splitting the time series into three phases according to altitude
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Previous segment

1

2

min —E,
D

min ~E,.p, [(D(G(z,¥),¥) — 1)°] +[Gr20(z1, %) — Gend-19:ma(ze-1,¥e-1) 2

v [(Dx,3) = 1] + 3Ea, [(DIG2,3),3)7]
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Aeronautic Engine Continuous Data Simulator

Mach Altitude Throttle Level Angle  Ambient Temperature
B 3 P I

Input AR ER. 1\ 7
H : / \\, = s"“ : : \M——T M \ !
Mission Profil N =/ [1-

Data Preprocessing:
Standardization

Phase Partitioning and
Segmentation

Temporal Segmentation

Phase :‘> within

Partitioning Phases

!

Sequential Segments Generation

!

Data Post-Processing: De-
Normalization

Concatenation of Segments

— L

Output

Generated CEOD

Altitude ____ Jhrottle Lever Angle
L \ During |,» After
1 ' . 1 .
; | Cruise | | Cruise
i . i
4 [ ' 1 1
100 1500 2o o ; |
v —— | |
v - |
i '
Model . Model e eeeanns Model i Model : Model
Before Cruise =+ ~| Before Cruise | Before Cruise | , | During Cruise | | After Cruise
i i '
i | ! !
T ' I
: | : ‘l’ 0
Generated I Generated L Generated Final Generated Generated
! Segment of Segments of Segments of
Segment 1 Segment 2 CEOD from the CEOD from CEOD from
of CEOD of CEOD Before Cruise the During the After
Phase Cruise Phase Cruise Phase
N1 EGT T
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000
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Demonstrator : Input & Output Data Example

Comparision Generated and Real N1

120

100

O QAR (Quick Access Record) for SAM146 engines
 Context variables used: ALT, TLA, M, TAT, EOF
d Engine variables generated: N1, EGT, T3 S e

™~

A m nputs: mission profil

L 0 1000 2000 2000 4000 5000 6000 7000 8000

Mach -
] .
a , engine measurements
ol
o
04 201 Comparision Generated and Real T
o
02 |
o1 =201 — nirf?l\rﬁuv
[ "0 1000 2000 3000 4000 5000 6000

500
1000 2000 3000 4000 5000 6000

Ambient Temperature 0
w0 _ Alttude
£ 35000
20 30000 |
wf o\ Y | 2w
o  \ /0 2000 o
% Y
2! N 4/ | w00 =
55 5000
o
© 1000 2000 3000 4000 5000 6000 K ° 000 000 000 400 5000 000 000 800
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Serial Engine State Corrector Model

Lm0

Flight 1 Flight 2 Flight n

* Input l
= Flight context E p— dwm | L0L T comeed Comct
) Measurments i Measurments Measurments
= Result of engine data |
SlmUIat|On - : P Context : ;’: : n ;‘;’j Context Context
= State Memor D
y N N t
Decoder Decoder Decoder
= OQutput
= Flig ht Context Encoder Encoder Encoder
= Real observed data t
= New state memory o R
Messurments : L " easurments
Context :’ : ) jj : Context Context
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Result obtained dysfunctional data simulation

PCA projection of memory state MSE between simulated and real observations
006 4
005 4
X 0.04 A
o L
‘ YV 003
- =
002 4
001 4
0.00 1
- 0 20 a0 60 B0
PC1 Flight

We use a rough dysfunctional simulator to produce known degradations.

Next step: expertise on real known dysfonctionnal data from MRO.
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jerome.lacaille@safrangroup.com
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