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Today's Al prescription lacks depth
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ol Massive Datasets; Semi-structured; High Dim

> Massive datasets
> Text in SOTA LLMs uses just O(1-10s) TB; Images O(100s) TB
> LHC or SKA alone each produce O(100s) PB per year!
> Challenge: Scaling LLMs on systems (1/O) for such datasets would be daunting
> Semi-structured (and tabular) data
> Bio/life science datasets are in specific complicated
> Challenge: Data manager = loading, organizing, cleaning, labeling etc
> Challenge: Desighing models (LLMs) to ingest such semi-structured data
> High dimensional data: encoders enough to solve this problem?
> LLMs designed, and proven effective w/ low dimensional data
> Text, images, audio, video
> Scientific datasets can have higher dimensional data
> Challenge: pushing the boundary for using LLMs with high dim data
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The Rise of Cloud Al
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Multi—tenant host—based isolation BIKM

Data Mobility

Solve fov processor and poweyr gravity



Al Factory
Avchitecture

Cloud Enables
New Infrastructure Modalities
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Al performance # HPC perforimance
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octets are self-
contained and includes the entire model
and pipeline for an LLM, and hence only
one octet needs to be checkpointed
per system, regardless of the overall
size of the cluster because it is a
complete representation of the system.

One thread per GPU.
Eight threads per 8-way GPU system.

Restores are




5.10 Checkpoint Loading and Saving

An important practical consideration for the training of large mod-
els is loading and saving model checkpoints, which are especially
large for the models considered in this paper. For example, the
trillion-parameter model has a checkpoint of size 13.8 terabytes.
The initial load of checkpoints for the trillion-parameter model by
all 384 nodes (3072 GPUs) reaches a peak read bandwidth of 1TB/s,
the maximum read throughput possible from the parallel filesystem.
Checkpoint saves reach 40% of peak write bandwidth (273 GB/s).

Source: NVIDIA + MICROSOFT + STANFORD Megatron-LM paper
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Nebula Saving with DeepSpeed and ORT
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Checkpointing Time (Sec)

Average Checkpointing Time
163.82

-178

GPT2 (1.7G) GPT2-large (10.3G)  GPT2-XL (20.6G)

B w/o nebula mw/ nebula

e 96.9% Reduction 25:25.3 %9% Reduction 26 04.9
7 18 00.2
94.5% Reduction 96.8% Reduction
32.27
3 15 5 09

End-to-end Training Time

44:07.2
41% Reduction

GPT2-Large GPT2-XL

m w/o Nebula mw/ Nebula

PS: Saving 4 checkpoints in an end-to-end training, with saving every checkpoint by 500 steps.

w/o Nebula

: DeepSpeed and ORT enabled
w/ Nebula: DeepSpeed, ORT, and Nebula enabled

Environment: V100, 1 node, 8 GPUs

Image: ptebic.azurecr.io/public/azureml/aifx/stable-ubuntu2004-cu117-py38-torch1131:latest
DeepSpeed 0.8.0, ORT: 1.13.1, Nebula: 0.15.9
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New Trend: Multi-Modal

Video & Imagery are driving up LLM capacities quickly.

PBs per 1K GPUs

0.3
LLM Text-Based Multi-Modal Model Multi-Modal Model
Chatbot (2022) 2024 2025
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Cownclusion HI:

Growth of system size & power increases will drive up MTBT

Cownclusion Hz:

Async makes write bandwidth checkpoint—speed 3 non—issue

Cownclusion H7%:

Recovery Speeds will scale much \avger as systems grow in size

Cownclusion H4:

Multi—Modal: Capacity = Performance with All-NVME
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Al's Sarbanes—0xley Moment
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We think that regulatory
iIntervention by governments will
be critical to mitigate the risks of
increasingly powerful models
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EU Al Act: Risk-based approach

Unacceptable risk - Prohibited
Social scoring, facial recognition, dark-patter Al, manipulation
Limited risk - Transparency

Chatbots, deep fakes, emotional recognition
o A e

Spam filters, video games

L

High risk - Conformity assessment
Medical Devices, transportation, education, law
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Article 72
Post-Market Monitoring by Providers and Post-Market
Monitoring Plan for High-Risk Al Systems

2. The post-market monitoring system shall actively and systematically collect,
document and analyse relevant data which may be provided by deployers or which
may be collected through other sources on the performance of high-risk Al systems
throughout their lifetime, and which allow the provider to evaluate the continuous
compliance of Al systems with the requirements set out in Chapter III, Section 2



The “it” in Al models is the dataset.

Posted on June 10, 2023 by jbetker

Trained on the same dataset for long enough, pretty much every model
with enough weights and training time converges to the same point...
Model behavior 1s not determined by architecture, hyperparameters, or
optimizer choices. It’s determined by your dataset, nothing else.

When you refer to “Lambda”, “ChatGPT”, “Bard”, or “Claude” then, it’s
not the model weights that you are referring to. It’s the dataset.
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C\jber Resilience

Ransomware Protection

Data Provenance

Data Tampering Protection

Model Re?roducibi\i-(:\j

Pipeline Versioning
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C\jber Resilience

Q

Ransomware Protection
\ndestructible sna?s(no-l;s
Ransomware Detection

Data Provenance

Dats Tampering Protection

WORM Data Retention
SAL—Accessible Audit Logs

Model Re?roducibi\i-l:\j

‘Pi?e\ine \/ers;omvug

Aw enterprise—grade python
dataset with immutability
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Point HI:
Consider the whole pipeline

Cownclusion Hz:

Cloud is coming whether we \ike i+ or vwot

Cownclusion H7%:

HPC Performance # Al Perf-ortma\nce’ Multi—Modal Solves All

Cownclusion H4:

Ewvterprise Data Management is Having |+s Moment
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Fastest—Growing in Infrastructure History
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