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About Me

Technology

* Machine Learning/Deep Learning Hardware and Software
Infrastructure

» Digital Twin / Metaverse Hardware and Software

» Al Vertical and Horizontal use case applications

Location

+ HO: Based in Sicily, Italy

* HQ: Lenovo (ltaly) Srl, Via S. Bovio, 3, 20054 Segrate Ml

Professional and Educational Background

* PhD in Neuroscience and Neurophysiology

* Researcher, Lecturer, Reviewer and Associate Editor in
neuroscience and neurophysiology

* Extensive professional experience in Immersive technology
applied to pre-clinical research and M&E

Passion

* Climbing, Boxing, Trekking, Yoga Nidra

* Avid Book Reader and Movie Watcher

* Photogrammetry, VR Game Dev, Coding
* VR Game Player
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| Lenovo (Italy) Srl | ISG
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From Fiction to Science

ARE YOU LIVING IN A COMPUTER SIMULATION?

BY NICK BOSTROM

GREG EGAN

[y (2003) Vol. 53, No. 211, pp. 243-255. (First version: 2001)]

[Published in Philosophic

I'his paper argues that at least one of the following propositions is true: (1) the
human species is very likely to go extinct before reaching a “posthuman™ stage:
(2) any posthuman civilization is extremely unlikely to run a significant number
of simulations of their evolutionary history (or vanations thereof): (3) we are
almost certainly living in a computer simulation. It follows that the beliel that
there 1s a significant chance that we will one day become posthumans who run
ancestor-simulations 1s false, unless we are currently living in a simulation. A
number of other consequences of this result are also discussed.

I. INTRODUCTION

Many works of science fiction as well as some forecasts by serious technologists and
futurologists predict that enormous amounts of computing power will be available in the
future. Let us suppose for a moment that these predictions are correct. One thing that later

their forebears or of people like their forebears. Because their computers would be so
powerlul, they could run a great many such simulations. Suppose that these simulated
people are conscious (as they would be 1f the simulations were sufficiently [ine-grained
and il a certain quite widely accepted position in the philosophy of mind is correct). Then
it could be the case that the vast majority of minds like ours do not belong to the original
race but rather to people simulated by the advanced descendants of an original race. It is
then possible to argue that, if this were the case, we would be rational to think that we are
likely among the simulated minds rather than among the original biological ones.
I'herefore, 1f we don’t think that we are currently living in a computer simulation, we are

Beyoad space, time, eternity - the ultimate creation dream

not entitled to believe that we will have descendants who will run lots of such simulations
of their forebears. That is the basic idea. The rest of this paper will spell it out more
carelully.

Apart form the interest this thesis may hold for those who are engaged in
futunistic speculation, there are also more purely theoretical rewards. The argument
provides a stimulus for formulating some methodological and metaphysical questions,
and 1t suggests naturalistic analogies to certain traditional religious conceptions, which
some may [ind amusing or thought-provoking.

I'he structure of the paper is as follows. First, we formulate an assumption that we
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generations might do with their super-powerful computers 1s run detailed simulations of
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Atoms to airplanes

New structures technolegies, developed across Boeing, are helping
accelerate product development sy sil seil

Research & Technology, works in "atoms to airplanes”

modeling, or the complete process of modeling an airplane
computationally from a molecular level up to the full-scale,
complete airframe.

One important goal of this work is to optimize the chemistry
of polymers to increase the load-carrying capability of the carbon
fiber in composites, which could significantly reduce the weight
of next-generation composite structures.

“This is exciting work because we're able to rapidly assess
hundreds of polymer candidates in a matter of weeks—a process
that might take years in a lab,” Schneider said. “We're also able
to quickly determine their performance in large-scale laminated
structures and screen for the best-performing candidates. This
opens the door to huge cost savings in the future.”

Work such as this demonstrates the benefits to Boeing
generated by the company's enterprisewide approach to making

Te(ry Schneider, an Associate Technical Fellow in Boeing

’ DECEMBER 2009-JANUARY 2010 / BOEING FRONTIERS
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research investments in key areas such as structures, a term
that describes the physical airframe components of airplanes
and other aerospace products. Critical aviation design issues—
including weight, reliability and safety—all depend on the quality
of research and planning that drives structures engineering.
Boeing has long been a leader in structures technology, and
research conducted throughout the enterprise has steadily
improved the design of structures and the materials used to make
them. The challenge today is to increase the company’s competi-
tive edge by investing in research that generates maximum benefit
for Boeing's range of products, both commercial and military.
That's why, in 2008, the company created its Enterprise Tech-
nology Strategy (ETS), which takes a coordinated, “One Company”
approach to technology development. The strategy is built
around eight technology areas, or domains, that support
Boeing's many business programs and can create a sustainable
technical competitive advantage that helps the company grow.
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From Digital Twin to Industrial Metaverse

Whole-System DT

Immersive DT

Digital Twin

< NVIDIA.

Lencvo 2024 Lenovo. All rights reserved.
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functionalities to interact with the real system in its
environment, allowing decision makers to better
understand the past and forecast the future.”

Arthur D. Little

Lenovo 2024 Lenovo. All rights reserved.



SIEMENS

A virtual world in which we can interact
in real time with photorealistic, physics-
based digital twins of our real world. We
believe digital twins are the building

blocks for the Metaverse.

= Microsoft

Industrial Metaverse enables humans and Al

to work together to design, build, operate,
and optimize physical systems using digital
technologies.

NVIDIA
Industrial Metaverse enables industrial
companies of all sizes to create closed-loop
digital twins with real-time performance
data, ideal for running simulations and
Al-accelerated processes for advanced
applications such as autonomous factories

that rely on intelligent sensors and
connected devices.

sme”

A systematic discipline that combines
hardware [...] data conversions through
analytics/machine learning, time histories
through cyber-infrastructure, cognition
through human-machine interface, and
configuration through the Metaverse.

IndustrialMetaverse.org

A real-time, persistent simulation space that
is the sum of all virtual worlds, digital twins,
and augmented reality that connects digital
economic assets and infrastructure on a
global scale in the industrial and commercial
setting.

COSMOTECH

The Industrial Metaverse enables the
creation of digital twins of places, processes,
real-world objects, and the humans who
interact with them.

Lenovo 2024 Lenovo. All rights reserved.




4
B T

IEII\'
N \l

¥ 3 -

‘ :
.
-

|| '\

»M

A massively scaled and interoperable network of real-time
rendered 3d virtual worlds that can be experienced
synchronously and persistently by an effectively unlimited
number of users with an individual sense of presence and
with continuity of data, such as identity, history,
entitlements, objects , communications and payments ”

Matthew Ball, The Metaverse

Lenovo 2024 Lenovo. All rights reserved.
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Anatomy of the Metaverse

Services, Games,
Shopping, Events, more

Experience

Ad Network, Socials,
Rating, Stores, Agents

Bt Design and edit tools, Discover
. Assets Markets,
Platforms

Creator Economy

Game Engines,
Multitasking Ul, Geospatial
Coherence, AR/VR/MR

Spatial Computing

loT, Microservice,
Blockchain, NFTs Decentralization

User Interface

Mobile, BCI, Haptic, Voice,
Gesture

5G/6G, WiFi 6, Cloud, 7nm
to 1.4 nm, XPUs, Edge
Computing, Storage

Infrastructure

(W=1aTe)\"/e} 2024 Lenovo. All rights reserved.
‘ Tr'ynh-The et al. “Artificial Intelligence fo‘rse: A Survey” arXiv:2202.1.] 15 Feb 2022 ' -




Metaverse System Model

Asset(s)

Heterogenous
Devices

Edge Gateways

Fleld Workers /
Robots

Knowledge
Workers

System(s)
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Engine
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Manufacturing Mobility  Health

Simulation and
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Asset World
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Headless
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The natural habitat of Al
is in the virtual world.”

Dr. Michael Grieves

- Intelligent digital twins and the development and management of complex systems -
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The Intertwined Nature of Metaverse and Al

Sensors/loT/SIm

Uses Generate

Digital Twin/Metaverse Big Data

Creates/
Operates/
Monitors
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Al value for the Metaverse

. Services, Games,
Personalization )

Education . Shopping, Events, more
Assistance
Experience
Ad Network, Socials,
_ Rating, Stores, Agents
— Recommendation ° Discover

Design and edit tools,
Creator Economy Assets Markets,

Content Generation Platforms

Spatial Computing ame Engines,
ultitasking Ul, Geospatial

Compute Speed-up pherence, AR/VR/MR

Decentralization

DT, Microservice,
Smart Contracts User Interface Blockchain, NFTs

Mobile, BCI, Haptic, Voice,

Inclusivity&Intuitivity Gesture

Infrastructure

« DG/6G, WIFi 6, Cloud, 7nm to 1.4
nm, XPUs, Edge Computing

Al ops, MLops *

Lenovo 2024 Lenovo. All rights reserved.
’ ‘ T'nh-The et al. “Artificial Intelligence fo‘rse: A Survey” arXiv:2202.1"l 15 Feb 2022 ‘ .
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Now Lenovo is working to help me connect with anyone anywhere

Human-Machine Interactivity Physically Accurate Realistic Interactive Virtual

Simulations Entities

Spatial Computing |
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How Today’s Al is Shaping Tomorrow’s Possibilities
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Advances in Neural Rendering and Mesh Generation

PixelNeRF
(2021)

pixelNeRF: Neural Radiance Fields from One or Few Images

Alex Yu Vickie Ye Matthew Tancik Angjon Kanazawa
UC Berkeley

[

a feed-forward manner from d sparse et of vie
onel. Leveraging the veluwme rendeving approach of NeRF, scene optimization.
our madel can be trained divecily from images with e ex-

on ShpeNer benehmarks for single im

e novel view syi-
theesis feesks with held-out objecrs oo weill as entire ioiseen

NeRF by demonsrrating it on malri-obfecr ShapeNer soene.
ard real scenes from e DTU dateser. In all cases, pix-
eINeRF mumperforms current siate-of-the-art baselines for

set of multi-view imag
novel view

For the v

v and code, please visit the project website:

when few input images are available.

Instant Ngp
(2022)
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:‘J end pinelNeRF, a leaming [ramework hal predicts 2 Neural Radiance Fueld (NeRF)
W representition From a single (lap) o Thattom). PaxelNeRE can be trained on a set of multi-view images. allowing it 1o
£ generate plausible movel view synl L Ew impul images wilbeul lesl-lime oplimizstsa (bilom left), In contrast, NeRF has no

L peneralization capahililses and performs poorly when only thoee inpul visws are svailable (boltem righth.

laa
~ Abstract L Introduction

- We propose pixelNeRF, a learning frameword thar pre- We study the problem of synthesizing novel views of a

— dices o continious pesral seete represertation conditioned scene from a sparse set of input views. This long-standing

‘:__] an one oF few inpur imag The exising approach for problem has recently seen progress due to advances in dif-
. comstructing newral radianee fields [27] involves opripiz- ferentiable newral rendering [27, 20, 24, 40]. Across these

C fieg the represertation o every soete indeperdently, regidr- approaches, a 3D scene is represented with a neural nei-

T ing many calibrared views and significans compate Time. work. which can then be rendered into 2D views. Notably,

F'J W rake o srep towards resolving these shorreomings by fn- the recent method neural radiance fields (NeRF) |
Lt trliecing an architecnire that conditions @ NeRF on im- shown impressive performance on novel view synthesis of

~ age inpuis in o fully comvedutiona manner. This allows a specific scene by implicitly encoding volurmetric density

'_,V.: the wetwork to be drafned acrss multiple scenes To leam and color through a neural network. While NeRF can ren-
= ascene prior, enalling it to perform novel view svathesis in der photorealistic novel views, often impractical as it

5 (di few as requires a large number of posed images and a lengthy per-

Inihis paper. we addeess these shorcomings by propos-
plicit 3D supervizion,  We condiect extensive experiments ing pixelNeRFE, a leaning framework that enables predict-
ing NeRFs from one or several images in a feed-forward
manner. Unlike the original NeRF nerwork, which does not
caregories. We firsher demonsivare the fexibiliny of pivel- make use of any image features, pixelMeRF tukes spatial
image features aligned to cach pixel as an input. This im-
age conditioning allows the framework 1o be trained on a
where it can learn scene priors
ntiesis and single image 30 reconsiruction, to perfonm view symhesis from one or few input views. In
conirast, NeRF iz unable to generalize and performs poorly
s shown in Fig. [

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

THOMAS MULLER, NVIDIA, Switzerland
ALEX EVANS, NVIDIA, United Kingdom
CHRISTOPH SCHIED, NVIDIA, USA
ALEXANDER KELLER, NVIDIA, Germany

https://nvlabs.github.io/instant-ngp

Trained for 1 second 15 seconds 1 seco 15 seconds 60 seconds reference

NelF

Fig. 1. We demanstrate instant training of newral graphics primitives on a single GPU for multiple tasks. In Gigapivel image we represent a gigapixel image by
a newral network. SDF learns a signed distance function in 3D space whase zera level-set represents a 2D surface. Neural radiance caching (NRC) [Maller
et al 2021] employs 2 neural network that is trained in real-time to cache costly lighting cakulations. Lastly, NeRF [Mildenhall et al. 2020] uses 2D images
and their camera poses to reconstruct  volumetric radiance-and-density field that s visualized using ray marching. In all tasks. our encoding and its
efficient implementation provide clear benefits: rapid training, high quality, and simplicity. Our encoding is task-agnastic we use the same implementation
and hyperparameters across all tasks and only vary the hash table size which trades off quality and performance. Tokyo gigapixel photograph =Trevor
Dobson (CC BY-NC-ND 2.0). Lego bulldozer 3D model oHavard Dalen (CC BY-NC 20)

Neural graphics primitives, parameterized by fully connected neural net architecture that s trivial to parallelize on modern GPUs. We leverage this
works, can e castly to train and evaluate. We reduce this cost with a versatile paralielism by implementing the whale system using fully-fused CUDA ker
Bew input encoding that permits the use of a smaller network without sac nels with a focus on minimizing wasted bandwidth and compate cperations.
rificing quality. thus significantly reducing the number of floating point We achieve a combined speedup of several orders of magnitude, enabling
and memary access operations. a small neural network is augmented by a training of high-quality neural graphics primitives in & matter of seconds.

mubtiresalution hash table of trainable feature vectors whose values are op and rendering in tens of milliseconds at a resalution of 15201080
timized through stochastic gradient descent. The maltiresolution structure

allows the netwark to disambiguate hash collisians, making for a simple CCS Cancepts: - Camputing methodalagies — Massively parafiel algo

rithms, Vectar / streaming algortthms; Neural networks

Authors” shlrcasex Thoenss Milker, NVIDIA, Zisich, S
cons; Alex Evans, NVIDEA, London, Ussted Kingilam, alesegdnvidiscom: Christoph Additional Key Words and Phrases: Image Synthests, Neural Networks, En
Schied, NVIDIA, Sesttle, USA, cachiedi@nvidia conr; Alexsasder Keller, NVIDIA, Berlin codings, Hashing, GPUs, Paralle] Computation, Punctica Approximation
Germany, akellerghnvadi com.
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Neuralangelo
(2023)

Neuralangelo: High-Fidelity Neural Surface Reconstruction

Zhaoshuo Li'*  Thomas Miiller'  Alex Evans'  Russell H. Taylor*  Mathias Unberath®
Chen-Hsuan Lin'

Ming-Yu Liu'
'NVIDIA Research

https://resear
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306.03092v2
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arxXiv:

Abstract

Newral surface reconstruction has been shown 1o be pow-
erful for recovering dense 3D surfaces via image-based neu-
ral rendering. However, current methods struggle to recover
detailed structures of real-world scenes. To address the
issue, we presens Neuralangelo, which combines the rep-
resentation power of multi-resolution 3D hash grids with
newral surface rendering. Two key ingredients enable our ap-
proach: {1} numerical gradients for computing higher-order
derivatives as a smoothing operation and (2} coarse-ro-fine
aptimization on the hash grids controlling different levels of
details. Even withour auxiliary inputs such as depth, Neu-
ralangelo can effecrively recover dense 3D surface structures
from mudri-view images with fidelity significantly surpass-
ing previous methods, enabling detailed large-scale scene
reconstruction from RGB video captures.

y 3D surface
reconstruction

Figure 1. We present Neuralangelo. 1 Iramework for high-fidelity 3D surface reconstruction from RGB images using newral volume
rendering, even without auxiliary data such as segmentation or depth. Shown i the ligure is an extracted 3D mesh of a courthouse.

1. Introduction

3D surface reconstruction aims to recover dense geomet-
ric scene structures from multiple images observed ar differ-
ent viewpoints []. The recovered surfaces provide structural
information useful for many downstream applications, such
as 3D asset generation for augmented/virtual/mixed real-
ity or envi ing for navigation of
robotics. Photogrammetric surface reconstruction using &

monocular RGB camera is of particular interest, as it equips
users with the capability of casually creating digital twins of
the real world using ubiquitous mobile devices.

Classically, multi-view stereo algorithms [0, 15, 33, 19]
had been the method of choice for sparse 3D reconstruc-
tion. An inherent drawback of these algorithms, however, is
their inability to handle ambiguous observations, e.g. regions
with large arcas of homogeneous colors, repetitive texture

Magic3D
(2023)

Neuralangelo

Rendering Time (ms)

10-30 per pixel <1 per pixel

~100-500 per pixel

Scene Complexity

High Medium-High Very High

Photorealism

No/ Limited  Yes Yes

Real-time Capability

No Yes No

Lenovo 2024 Lenovo. All rights reserved.

Magic3D: High-Resolution Text-to-3D Content Creation

Chen-Hsuan Lin®  Jun Gao®  Luming Tang™  Towaki Takikawa™  Xiaohui Zeng”
Xun Huang  Karsten Kreis  Sanja Fidler’  Ming-Yu Liv'  Tsung-Yi Lin

NVIDMA Corporation

Ahstract

DrveamFuston [ 23] has recemly demonstrated the wiliny
af a pre-tradived tear-to-image diffision model to oprimize
Newral Reeliance Flelds (NeRF) [25], achieving remarkoble
pext-to- 20 synrhesis vesulrs, However the method has o in-
herent Sridtarions: (o) exdremely slow optimizaiton of NeRF
space sipervision on NeRF,
Leading 1o Tow-qualiry 3D modets witk a long processing

ard (b low-resolution i

viame. B rhis pagrer, we addeess these tarons by antlizing @
two-stage epttmization framewort, Fless, we olaln o coarse
mtacel wusing a low-resolurion diffision prioe and aeeelerare
with @ sparse 3D hash grid strwenre, Using the coarse repre-
sentarion ax e fnfnalizatton, we fieether opimize @ texured
00 snesh model with an efficien differentialle rendever in-
vcting witk o Jugh-reselarton fatenr diffision model. Our
miethod, dubbed Magic3D, ean create kigh qualire 3D mesh
mioelels in A0 minwres, which s 2 fasrer than DreamFu-
slon (reportedly taking 1.5 hours on average), while atso
achieving higher resolinton. User studies show 61 7% raters
i prefer o apprecech over DreamFusion. Together with
e dmage-conditfoned gereratfon capalulites, we provide

wrers with new 5 reeconeried 30 symthests, opening up new

avenies io wirlous creative applicartons.

L. Introduction

3D digital content has been in high demand for a varieny
of applications, including gaming, entertainment, architec-
twre., and robotics simulation. 1t is slowly finding its way into
wirtually every possible dom. etail. online conferencing,
wirtual social presence. education, #ic. However, creating
professional 3D content is not for anyone — it reguires
immense anistic and aesthetic waining with 3D modeling ex-
pertise. Developing these skill sets takes a significant amount
of time and effor. Augmenting 3D contemt creation with
natural language could considerably help democratize 31
coment creation for novices and turbocharge expen artists.

T equal comtribusic

Image content creation from text prompts [2, 30,35 35]
has seen significant progress with the advances of diffusion
madels [15, 25, 04] for generative modeling of images. The
key enablers are large-scale datasets compeising billions
of samples (images with wext) scrapped from the Interner
and massive amounts of compute. In contrast, 30 content
generation has progressed at a much slower pace. Existing
3D object generation madels [1,9,19] are mostly categorical.
A trained model can only be used 10 synthesize objects for a
single class, with early signs of scaling v multiple classes
shown recenily by Zeng ey al. [19]. Therefore, what a user
ean do with these models is extremely limited and not yet
ready for amistic creation. This limitation is largely due to the
lack of diverse large-scale 3D dataseis — compared o inage
and video content, 3D comtent is much less accessible on the
Interner. This naturally raises the question of whether 30
seneration capability can be achieved by leveraging powerful
text-to-image generative maodels,

Recenily, DreamFusion [ 2] demonsirated iis remarkable
ahility for text-conditioned 3D content generation by wti-
lizing a pre-trained exi-to-image diffusion mode] [ 5] thar
generaies images as a sirong image prior. The diffusion
madel acts as a eritic w optirize the underlying 30 repre-
sentation. The optimization process ensures that rendered
images from a 3D model, represented by Neural Radiance
Fields {MeRF) [25]), march the diswribution of photorealis-
e images across different viewpoints, given the input text
prompt. Sincee the supervision signal in DreamPusion oper-
ates on very low-resolution images (G4 = G4), DreamPusion
cannot synthesize high-frequency 30 geometric and texiure
details. Due to the use of inefficient MLP architectures for
the NeRF representation. practical high-resolution synthesis
miay nod even be possible as the required memaory footpring
and the compuration budget grows quickly with the resolu-
tion. Bven ara resolution of G4 G4, optimization times are
in howrs 1.5 hours per prompt on average using TPUwd ).

I this paper, we present a method that can synthesize
highly detailed 30 models from fext prompis within a re-
duced computation time. Specifically, we propose a coarse-

A.Yu, V. Ye, M. Tancik and A. Kanazawa, "pixelNeRF: Neural Radiance Fields from One or Few Images," 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021, pp. 4576-4585, doi: 10.1109/CVPR46437.2021.00455.
keywords: {Convolutional codes;Solid modeling;Computer vision; Three-dimensional displays;Image resolution;Computer architecture;Benchmark testing},
“Instant Neural Graphics Primitives with a Multiresolution Hash Encoding” Thomas Miiller et al. ACM Transactions on Graphics (SIGGRAPH), July 2022a

Li, Zhaoshuo & Miller, Tho
Lin, Chen-Hsuan & Gao, Jun

s, Alex & Taylor, Russell & Unberath, Mathias & Liu, Mi
Luming & Takikawa, Towaki & Zeng, Xiaohui & Huang, X

en-Hsuan. (2023). Neuralangelo: High-Fidelity
en & Fidler, Sanja & Liu, Ming-Yu & Lin, Tsf

econstruction. :
gic3D: High-Resolution Text-to-3D Content Creal 550/arXiv.2




Towards Real-Time Physically Accurate Simulations
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Approximating mesh-motion Laplacian mesh motion
solver in OpenFOAM with MLP
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Using CNN to Solve Euler-Lagrange, Momentum Transfer,

and Incompressible RANS Equations

Lenovo 2024 Lenovo. All rights reserved.
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Simulating high energy physics calorimeter detector
outputs with 2D GAN

Video generation models as general purpose simulators
of the physical world?

Maric, T., Fadeli, M.E., Rigazzi, A. et al. Combining machine learning with computational fluid dynamics using OpenFOAM and SmartSim. Meccanica (2024). https://doi.org/10.1007/s11012-024-01797-z

Rojek, K., Wyrzykowski, R., Gepner, P. (2021). Al-Accelerated CFD Simulation Based on OpenFOAM and CPU/GPU Computing. In: Paszynski, M., Kranzimiiller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds)

Computational Scie CCS 2021. Lecture Notes in Computer Science(), vol T
Rehm, Florian et al. “ Convolutional Generative Adversarial Networks
https://openai.com/i tion-models-as-world-simulators/

ham. https://doi.org/10.1007/978-3-030-77964-1

2
ysics Calorimeter Simulations.” AAAI Spring Symposw. -
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Al-optimized Portfolio from MoﬁdéIJDeveIopment to Inferencing

80+ new and enhanced Infrastructure platforms — Pocket to Cloud, Edge to Core

Data Management

Solutions

ML & Data Analytics

Deep Learning Training HGX

SD650-1 V3 NEW SR780a 8-GPU HGX

| eronvo

ThinkStation
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ThinkPad
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ThinkEdge

. . 4-socket i ST650 V3 Intel
High Performance File System (W/WEKA) SR850 /2 p SR670/75 V3 4-8x PCle SD665-N V3
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DSS-G / Spectrum Scale SR850 V3 Inte
BeeGFS SR860 V2
SR860 V3 Intel 3
DM & DE DE6600
DM7100F DE6600
DM5100 2-Socket
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ThinkSystem
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NEW P3 Ultra P1 Gen6 Processin g Units SE3S0 > IO MX Systems ~ HX Systems VX Systems
NEW P3 Tiny : N2 SISESUN (Microsoft) (Nutanix) (VMware)
ThinkPad X13s Genl - 15 TOPS NEW SE360 V2 HX1330 VX3331
R ThinkPad Z13 Gen2 — 11 TOPS SE450 A
NEW S ThinkPad Z16 Gen2 — 11 TOPS SRS AR e M <
NEW P7 . MERASIZEES MX3331-F HX2330 VX7531
P620 ThinkPad T14s AMD Gen4 — 11 TOPS MX3331-H HX2331
ThinkPad T14 AMD Gen4 — 11 TOPS
NEW P5 . MX3530-F HX3330
ThinkPad T16 AMD Gen2 - 11 TOPS
NEW P3 Tower . MX3530-H HX3331
i ThinkPad X13 AMD Gen4 - 11 TOPS MX3531-F HX5530
Clients MX3531-H HX5531
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Challenges ahead

Scalability Security & Interoperability &
& Energy Efficiency Privacy Standards

py —
— |

Compute & Storage Ethic & Regulations
Optimization
2024 Lenovo. All rights reserved.
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Lenovo E2E — OVX Infrastructure Solutions
Through Collaboration with NetApp and NVIDIA Lenovo ‘ < NVIDIA.

Physics Matenals Path-Tracing

NVIDIA OMNIVERSE ENTERPRISE

Create View

Nucleus Connect | Simulation RTX Renderer

Lenovo to Deliver Enterprise Al Compute for NetApp AlPod™
Through Collaboration with NetApp and NVIDIA
Article

4dN1ONd1LSVdANI XAO — 3424 - OAONT']

VMware vSphere + NVIDIA RTX Virtual Workstation®

WIDIA Studio Laptop NVIDIA RTX Workstation NVIDIA-Certified Server
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The benefits of MV tech application embrace all industries.

Automotive Energy Infrastructure Retalil Science

. . i i . i « Autonomous Warehouse ¢ Accelerating Carbon Capture
| Fast-Track Industrial Factory Acc_eleratlng Fusion Reactor21 Transformlng Telco Network uto o g P
Planning Design and Development Planning and Operations RObO_tS 3” I_O_ragelf_l_ .
- S - Reducing Downtime and - Simulating and Optimizing * Retail Layout * Visualizing High-Resolution,
«  Developing Custom Applications ) g B . ,
for Facfor;?Planners o Unplanned Maintenance Autonomous Railway Networks ¢ Optimizing Distribution Global-Scale Climate Data
Optimizing Wind Farm Design « Testing and Optimizing 5G Center Throughput * Accelerating Climate
and Electricity Generation Deployment R_esea_rc_:h
* Visualizing Molecular
Dynamics

« Brain Digital Twin

Lenovo 2024 Lenovo. All rights reserved.
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Industrial Metaverse

Are we there yet?

Takeaways:

The extended and enhanced use of digital twins is at the core of the Industrial Metaverse. Al applications can

SHOMIE) 2T RgE speed up 3D asset creation and prototyping while providing more intelligent capabilities to DT

Integrating Al into the HPC framework for the Industrial Metaverse unlocks new capabilities, driving innovation
and efficiency in high-fidelity rendering and physical simulations.

The key technologzigzs for achieving extended whole-system digital twins are not yet mature, but advances in Al,
edge computing, and cloud infrastructure are rapidly closing the gap.

Key issues include security, scalability, latency, costs, skill gaps, and regulatory

Al-Powered Metaverse

Challenges compliance (including Al and data governance)
Accelerators mem bw will keep increasing, Al eats HPC, Raytracing engine will be integrated into Al superchips
Future Trends (i.e.: NVIDIA DGX) or Viz card will start employing DGX-like architectures

o~ v
"s‘. 4 o
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