

State of the Art: the promises and limitations of Hybrid Qomputing

Workshop: Europe is on its way towards "Hybrid Qomputing"

Forum Teratec 2021 | June 22, 2021 | KRISTEL MICHIELSEN

Member of the Helmholtz Association

Quantum Technology **Readiness** Levels

OTRL Quantum Technology Readiness Levels describing the maturity of Quantum Computing Technology	QTRL9	QCs (QAs) exceed power of classical computers
	QTRL8	Scalable version of QC (QA) completed and qualified in test
	QTRL7	Prototype QC (QA) built solving small but user-relevant problems
	QTRL6	Components integrated in small quantum processor w/ error correction
	QTRL5	Components integrated in small quantum processor w/o error correction
	OTRL4	Multi-qubit system fabricated; classical devices for qubit manipulation developed
	OTRL3	Imperfect physical qubits fabricated
	OTRL2	Applications / technologically relevant algorithms formulated
	OTRL1	Theoretical framework for quantum computation (annealing) formulated

© Kristel Michielsen, Thomas Lippert – Forschungszentrum Jülich (http://www.fz-juelich.de/ias/jsc/EN/Research/ModellingSimulation/QIP/QTRL/ node.html)

Member of the Helmholtz Association

June 22, 2021

Page 2

Kristel Michielsen

Quantum Technology Readiness Levels

© Kristel Michielsen, Thomas Lippert – Forschungszentrum Jülich (http://www.fz-juelich.de/ias/jsc/EN/Research/ModellingSimulation/QIP/QTRL/_node.html)

Page 3

Member of the Helmholtz Association

June 22, 2021

Kristel Michielsen

High performance & Quantum Computers

linked, to solve problems optimally

High Performance

Computers

HPC simulations of

quantum computing /

annealing devices

Quantum Computers & Annealers

Understanding – Design – Benchmarking

(Hybrid) simulations for applications

Page 4

Kristel Michielsen

Hybrid quantum-classical computing systems

for the realization of the full potential of quantum computing

- Hybrid quantum-classical algorithms
 - Variational Quantum Eigensolver **VQE**: quantum chemistry
 - Quantum Approximate Optimization Algorithm **QAOA**: optimization
 - Quantum Support Vector Machine **qSVM**: classification and clustering

Proper benchmarking & implementation on real devices

Quantum Approximate Optimization Algorithm

Jülich Universal Quantum Computer Simulator – JUQCS

- Variational quantum algorithm (hybrid algorithm)
- Relies on iteratively applying a series of parametrized unitary transformations to a quantum register, measuring its resulting state and evaluating the energy expectation value
 - Number of iterations $p \ge 1$
- A classical optimization algorithm is used to optimize the parameters β and γ of the unitary transformations

GPUs of JUWELS Booster for execution quantum part \rightarrow QPUs

CPUs of JUWELS Booster for execution classical part

De Raedt et al., CPC **176**, 121 (2007) De Raedt et al., CPC **237**, 47 (2019)

Simplified tail assignment problem 40 qubits

Willsch et al, Quant. Inf. Proc. 19:197 (2020) Willsch et al, arXiv:2104.03293

https://www.youtube.com/watch?v=zqRcT62cEsE

Modular Supercomputer Architecture

Jülich Supercomputing Centre

Modular Supercomputer Architecture

Jülich Supercomputing Centre

Member of the Helmholtz Association

Modular Supercomputer Architecture

JUNIQ - Jülich UNified Infrastructure for Quantum computing

A European quantum computer user facility at the Jülich Supercomputing Centre

FROM VISION TO REALITY – THE EU'S COMMITMENT

(HPC|@S)High Performance Computer and Quantum Simulator hybrid

2021: support for the first hybrid HPC/Quantum computing infrastructure in Europe

JUNIQ - Jülich UNified Infrastructure for Quantum computing

- QC user facility for science and industry
 Installation, operation and provision of QCs
- 3. Unified portal for access to QC emulators and to QC devices at different levels of technological maturity (QC-PaaS)
- 4. Development of algorithms and prototype applications
- 5. Services, training and user support

Kristel Michielsen

6. Modular quantum-HPC hybrid computing

Future: Modular Exascale Supercomputer

- Unique world-leading instrument for high-end simulation, large-scale Al and data science, for scientific and industrial research in Germany and Europe
- Optional: integration of future computing technology (quantum, neuromorphic)

Hybrid usage of High performance & Quantum Computers

Member of the Helmholtz Association

June 22, 2021

Page 15 Kristel Michielsen

applications

