Machine Learning Reliability Techniques for Composite Materials in Structural Applications.

Roberto d'Ippolito, Keiichi Ito, Silvia Poles, <u>Arnaud Froidmont</u> Noesis Solutions

Optimus® by Noesis Solutions

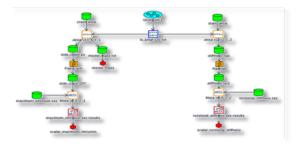
Optimus[®] is a Process Integration & Design Optimization (PIDO) software

that automates simulation based design processes

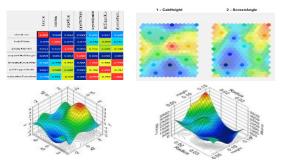
and directs parametric simulation campaigns toward the best product design

Optimus[®] – solution for engineering optimization

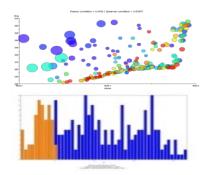
Design Process Automation



Design Space Intelligence



Design & Reliable Optimization



TIME SAVINGS

SMART DECISIONS

MEET PERFORMANCES

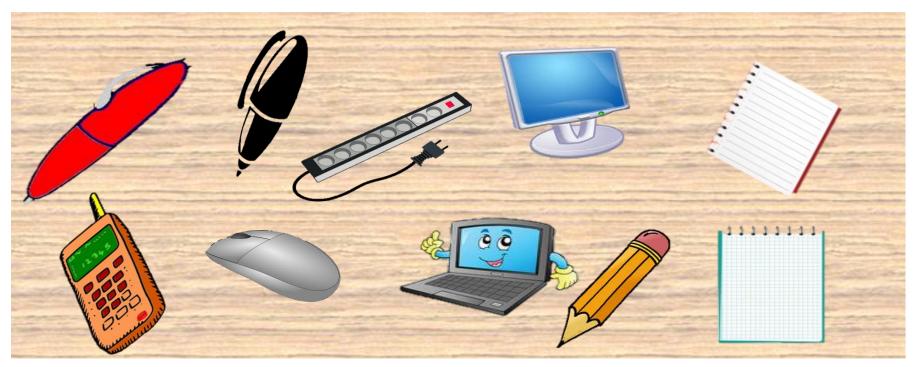
Agenda

Agenda

Self-Organizing Map

- The Self-Organizing Map (SOM) is a powerful technique for organizing data into a specified number of bins.
- The data points are grouped into bins respecting their similarities.
- First described by Kohonen (1982), also known as Kohonen maps or Kohonen networks.
- All bins are organized in a lattice that can preserve the topological properties of the data and can then displays the final results graphically in a very simple manner.

Ex: Organize your Desk



Filling the boxes

- Suppose we have 6 bins and we want to fill in the boxes
- We put in the same bin only "similar" objects and in a closer bin something that is still alike for some characteristics

Coloring the bins

- The grid can now be colored according to the characteristics (values) of the contained objects.
- We may color the bins according to:
 - Weight
 - Dimension
 - Cost

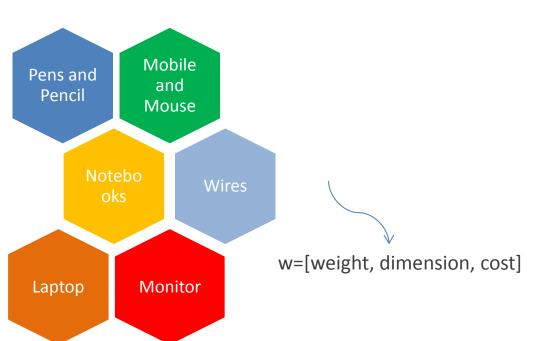
timus®

Comparing the maps

Cost

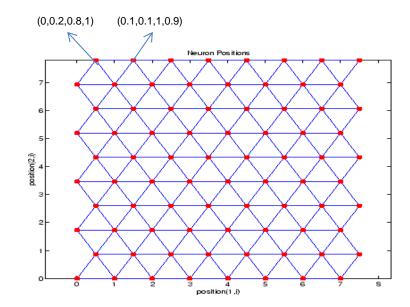
Definitions

- A SOM consists of components that are named grid **nodes** (or neurons, or units)
- The usual arrangement of nodes is a 2-D hexagonal grid
- A weight vector is associated with each node.
- The weight vectors are more similar at the nearby



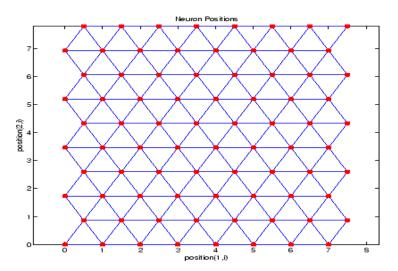
How it works

- From a mathematical point of view, a selforganizing map (SOM) is a type of artificial neural network trained using unsupervised learning to produce a discretized representation of the training samples
- The self-organizing map consists of a number of hexagonal cells organized in a 2-dimensional grid with n_r rows and n_c columns.
- Each cell c is corresponding to a vector of weights, ranging between 0 and 1, $w \in [0,1]^d$ where d is the dimension of the selected space.



Simplified Algorithm

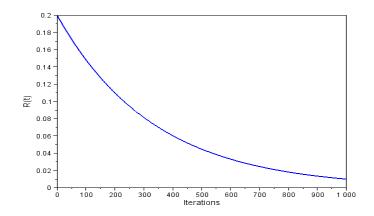
- Generate random weights for each cell
- Loop for each iteration:
 - Put each experiment in the cell with the closest weight.
 - Re-compute the weight according to
 - Average weight of the experiments in each cell
 - Learning rate
 - Neighborhood function
 - Check stopping criteria's



Learning Rate

- Allow big changes in the weight of each cell at the beginning
- Slowly, freezes the ability of the algorithm to modify the weights of the cells

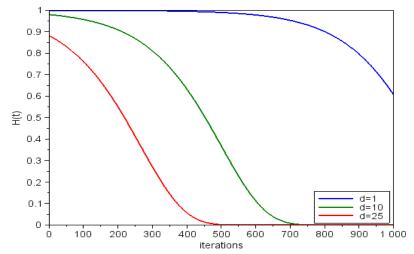
าบร®



This plot is generated with R0=0.2 and N=1000

Neighborhood function

- H(t) is representing the neighborhood function that preserves the topological properties of the points.
- The higher the value of this function, the bigger is the radius of influence of any modification on the map.
- As the learning rate function, the neighborhood function in decreasing over time

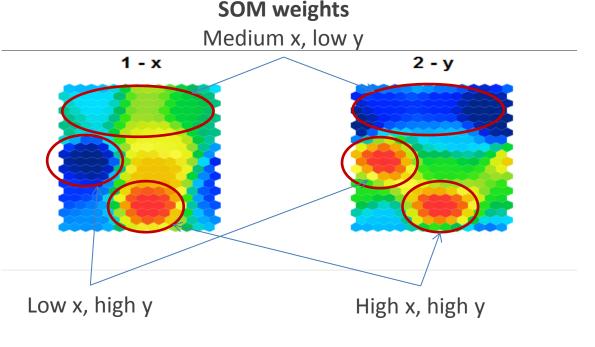


H(t) for a cell that is distant 1, 10 or 25 respectively (SOM with radius 50, 1000 iter.)

SOM's plots

- The SOM plot for a variable indicates regions where the variable has low or high values
- When minimizing a certain output, one can look for cells with a dark blue color (and see the ranges of the corresponding inputs)

nus®



Post-processing with SOM

- On SOM, there is no coordinates showing the location on the map.
- If two SOMs show similar patterns, that means these parameters are correlated.
- If you see similar patterns but inverted in color between SOM plot of different parameters, that means that these parameters are anti-correlated.
- In Optimus, the SOM can be trained for each input parameter and output response.

Post-processing with SOM

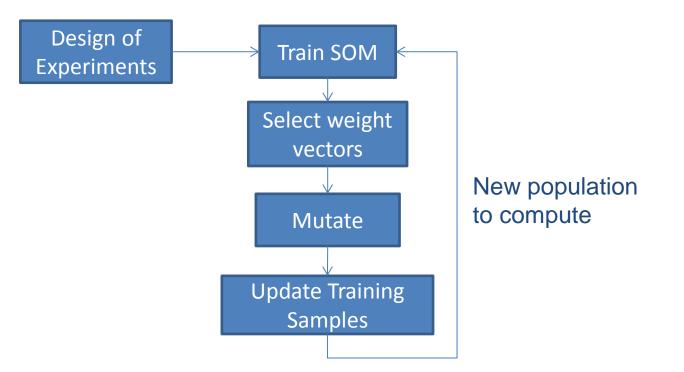
- You can also check whether a cell has any associated samples to it
- You can identify interesting design spaces, and trade-off relationships among parameters
- You can see clusters of similarities
- You can look for constraint satisfying regions
- You can sample further in the identified interesting design spaces.

Agenda

SOM vs Response Surface Model

- A Self Organizing Map can also predict values of a sample
- SOM can better handle discontinuous function
- Quantitative accuracy of performance is not always of primary importance but relative merit is
- Unlike RSM's, SOM do not need all the inputs for output evaluation

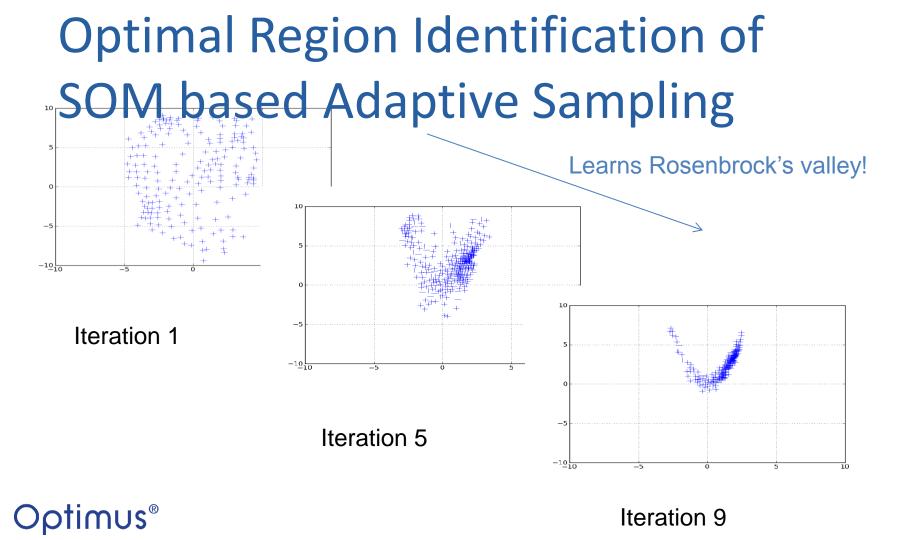
SOM based Adaptive Sampling (SOMBAS)



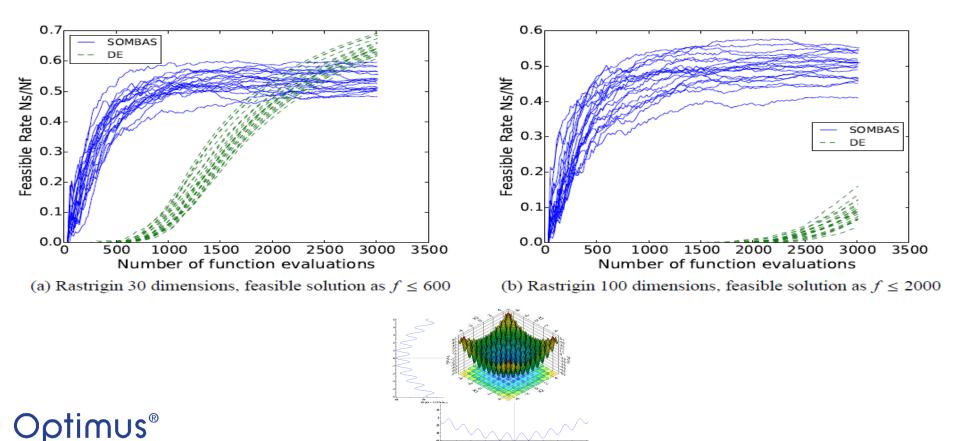
Updating Training Samples

- 1. Randomly pick one sample from the training sample set
- 2. If the new mutated sample (weight vector) is better than the picked training sample replace the training sample with the new one.
- 3. Otherwise keep the old training sample

SOMBAS Merit Function: To be below a certain threshold



SOMBAS: Feasible Region Identification



SOMBAS vs DE

Population/training sample size (30 ~ 45) adapted in favor of DE and number of function evaluation limited to about 2000. Tested functions are in 30 dimensions.

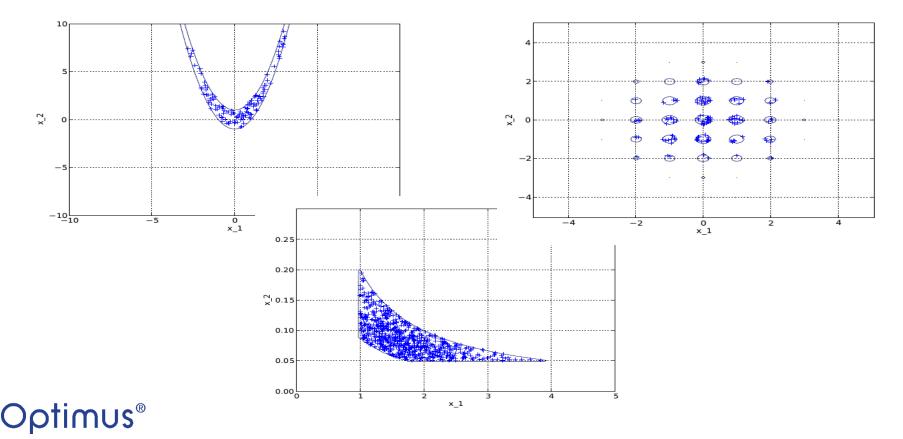
	SOMBAS		DE	
Function	\tilde{N}_f	\widetilde{f}	\tilde{N}_{f}	\widetilde{f}
Rosenbrock	2019	193	2025	4.25e + 05
Rastrigin	2013	189	2030	293
Rotated Ellipsoid	2003	63.5	2010	418
Ackley	2005	4.08	2020	6.12
Manevich	2014	0.0177	2010	0.101

SOMBAS vs DE

Large population/training sample size (900) and number of function evaluation limited to about 2000. Tested functions are in 30 dimensions. Number of function evaluation Nf and minimum response f are average of 20 runs.

	SOMBAS		DE	
Function	\widetilde{N}_{f}	\widetilde{f}	$ ilde{N}_{f}$	\widetilde{f}
Rosenbrock	2283	201	2700	1.33e + 06
Rastrigin	2083	219	2700	731
Rotated Ellipsoid	2379	11.9	2700	533
Ackley	2353	2.38	2700	12.5
Manevich	2196	0.0982	2700	3.41

Non-Convex Space Filling of SOMBAS



Summary

- The new method identifies interesting region (domain) in the input space and samples from it
- The method does not rely on parameterized distributions
- Fast initial decrease in objective functions (in the tested functions)
- Good diversity seeking of feasible solutions (yet qualitative)
- Needs more evidence

Agenda

Application to Composite Materials

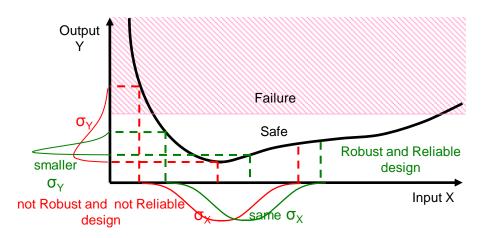
- Many layers of material:
 - Directions of the layers gives different characteristics of the final material.
 - (Small modification of the direction can cause huge difference in the final result)
- The problem is
 - Highly Non Linear
 - High-Dimensional
 - Difficult to optimize

Motivation

- Uncertainty is inevitable in engineering design optimization
- Uncertainty can degrade the global performance of an optimized design solution
- Uncertainty can change feasibility of the selected solution
- Uncertainty propagates when several disciplines are coupled and the propagation of uncertainty has to be accounted
- It is important to identify uncertainty and how to best allocate investments to reduce uncertainty under a limited budget.

Reliability

- Probability that a failure is attained as a result of input variability
- Failure probability and reliability index are used as measure of the reliability of outputs
- A reliable design has a low failure probability with respect to predefined failure constraints

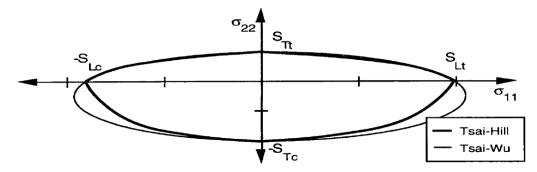


Motivation

- Current reliability approaches have inherent limitations:
 - FORM/SORM: multiple failure criteria and/or closed LSF cannot be handled properly
 - Monte Carlo simulation/subset simulation: number of samples, even for low probabilities, can still be very prohibitive to compute
- Challenges: either too approximate, or too expensive
- A trade off exists, that can be tuned between the two extremes

Motivation: composite materials

Composites typically use energetic criteria for failure estimation



• Example: Tsai-Hill

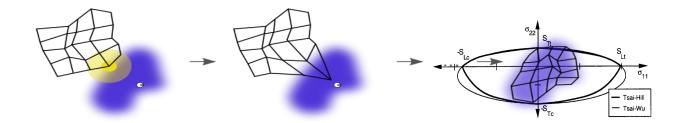
$$G = 1 - \left[\left(\frac{\sigma_1}{F_1} \right)^2 - \frac{\sigma_1 \sigma_2}{F_1^2} + \left(\frac{\sigma_2}{F_2} \right)^2 + \left(\frac{\sigma_{12}}{F_{12}} \right)^2 \right] \begin{cases} \mathbf{G} > \mathbf{0} & \mathbf{SAFE} \\ \mathbf{G} \leq \mathbf{0} & \mathbf{FAILURE} \end{cases}$$

Motivation: composite materials

- Energetic criteria for composites have:
 - A closed limit state function
 - Progressive failure mechanisms
- None of the actual reliability techniques can handle this problem properly
 - FORM / SORM fail miserably
 - Monte Carlo / Subset simulation need too many samples to estimate Pf in the order of 10⁻⁶

Procedure outline

- Feasible region identification:
 - SOMBAS will learn the feasible region for composites, taking into account all possible failure modes and even multi-connected regions.



Advantages

- Much faster integration capability
 - with respect to reference Monte Carlo or subset simulation approaches
- No constraint on the shape of the integration domain:
 - the domain can be closed, open or even multi-connected –
 SOMBAS is able to address all these kind of domains.
- Tunable accuracy:
 - Total number of samples vs accuracy can be assessed

Conclusion

SOMBAS is a new, revolutionary approach

Preliminary results are impressive on high dimension problems

Self-Organizing Maps also gives the probability of failure

Thank You !

info@noesissolutions.com

