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Optlmu® byNoesisSolutions

Optimu® is @rocesdntegration &
DesignOptimization PIDQ software

that automates
simulationbaseddesign processes

and directs
parametric simulation campaigns
toward thebest productdesign
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SeltOrganizing Map

The SeHOrganizing Map (SOM) is a powerful technique for organcang
Into aspecified numbeof bins.

Thedata points argroupedinto bins respecting their similarities

First describedby Kohonen(1982), als&known asKkohonenmmaps or
Kohonemetworks.

All bins are organized in a lattice that can preserve the topological _
properties of the data and can then displays the final results graphically in
a very simple manner.
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Ex: Organize your Desk
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Filling the boxes
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Suppose we have 6
bins and we want to
fill in the boxes

Weput in the same

OAY 2yfte daaAiAYA
objects and in a closer

bin something that is

still alike for some
characteristics
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Coloring the bins

The grid can now be
colored according to
the characteristics
(values) of the
contained objects.

We may color the bins
accordingo:

Weight
Dimension
Cost
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Comparing the maps

Weight Dimension Cost
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Definitions
A A SOM consists of

components that are named
grid nodes (or neurons, or Pens and
units) Pencil

A The usual arrangement of
nodes is a 2-D hexagonal
grid

A A weight vector is
associated with each node.

A The weight vectors are
more similar at the nearby

\

w=[weight, dimension, cost]
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How It works

(0,02,081)  (0.1,0.1,1,0.9)

From a mathematical point of view, a self
organizing map (SOM) is a typeaofificial \ | / S

neural networktrained using unsupervised
learning to produce a discretized
representationof the trainingsamples

Theseltorganizing map consists of a number _
of hexagonal cells organized ina 2
dimensional grid witle rows ande

columns.

Eachcellci d N A AVAVAVAVAVAVAY
acncellclIs corresponaing {0 a vector o vvvvv |

weights, ranging between 0 and 1,

B
g

0 N [rip] where d is the dimension of the T et
selectedspace
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Simplified Algorithm

Generate random weights for each cell

Meuron Positions

Loop for each iteration:
Put each experiment in the cell with the
closest weight.

Recompute the weight according to
Average weight of the experiments in each cell
Learning rate

Neighborhood function VAVAVAVAVAVAVA
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Learning Rate

Allow big changes in the weight of each cell at the
beginning

Slowly, freezes the ability of the algorithm to modify o«
the weights of the cells F oo

T T T T T T T T T
4] 100 200 300 400 500 600 700 800 Q00 1000
lterations

This plot is generated with R0=0.2
and N=1000
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Neighborhood function

H(t) is representing the neighborhood function 1
that preserveshe topological properties of the "
points. .

Thehigher the value of this function, the bigger s
the radius of influence of any modification on tt ¥ °¢7

0.4 4

map. ]
Asthe learning ratdunction, theneighborhood 02
function indecreasing over time 0.1 -ig

o] T T T T T T f T T
0 100 200 300 400 500 600 700 800 900 1000
iterations

H(t) for a cell that is distant 1, 10 or 25
respectively (SOM with radius 50, 106).)
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{ haQa LIX 20a

SOM weights

A The SOM plot for a Mediumx, low y
variable indicates
regions where the
variable has low or
high values

A When minimizing a
certain output, one can
look for cells with a
dark blue color (and Low X, highy High x, high 'y
see the ranges of the
corresponding inputs)
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Postprocessing with SOM

OnSOMthere is nocoordinates showing thecationon the map.
If two SOMs show similar patterns, that means these parameters are correlated.

If you see similar patterns but inverted in color between SOM plot of different
parameters, that means that these parameters are -@otirelated.

In Optimus, the SOM can be trained for each input parameter and output
response.
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Postprocessing wittSOM

You can also check whether a cell has any associated samples to it

Youcan identify interesting design spaces, and tradierelationships among
parameters

You can see clusters of similarities
You can look for constraint satisfying regions

Youcan sample further in the identified interesting design spaces.
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SOM vs Response Surface Mode

A Self Organizing Map can also predict values of a sample

SOM can bhetter handle discontinuous function

Quantitative accuracy of performance Is not always of primary importance but
relative merit is

'vEiAlS w{aQaz {ha R2 y2i ySSR Ifft i
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SOM based Adaptive Sampling (SOMB

Design of

. Train SOM
Experiments

Select weight
vectors

New population
Mutate to compute

Update Training
Samples
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Updating Training Samples

1. Randomly pick one sample from the training sample set

2. If the new mutated sample (weight vector) is better than the
picked training sample replace the training sample with the
new one.

3. Otherwise keep the old training sample

SOMBAS Merit Function: To be below a certain threshold
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Optimal Region ldentification of
Adaptive Sampling

LearnsRo s e n b rvaleyk 6 s

lteration 1

lteration 5

Optimus® Iteration 9



SOMBAS: Feasible Region Identification
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SOMBASSDE

Population/training sample siz€30 ~ 45) adapteh favor of DE and
number of function evaluation limited to about 2000. Tested functions

are in 30 dimensions.

SOMBAS DE
Function N f f N f f
Rosenbrock 2019 193 2025 | 4.25e + 05
Rastrigin 2013 189 2030 293
Rotated Ellipsoid || 2003 63.5 2010 418
Ackley 2005 4.08 2020 6G.12
Manevich 2014 | 0.0177 | 2010 0.101
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SOMBAS vs DE

Large population/training sample size (900) and number of function
evaluation limited to about 2000. Tested functions are in 30 dimensions.
Number of function evaluatiohlf and minimum response f are average of

20 runs.
SOMBAS DFE
Function N f f N f f
Rosenbrock 2283 201 2700 | 1.33e + 06

Rastrigin 2083 219 2700 731
Rotated Ellipsoid || 2379 11.9 2700 533
Ackley 2353 2.38 2700 12.5
Manevich 2196 | 0.0982 | 2700 3.41
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Non-Convex Space Filling of SOMBA.
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Summary

The new method identifies interesting region (domain) in the
Input space and samples from it

The method does not rely on parameterized distributions

Fast initial decrease in objective functions (in the tested
functions)

Good diversity seeking of feasible solutions (yet qualitative)
Needs more evidence
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Application to Composite Materials

Manylayers ofmaterial:

Directions otthe layersgives differentcharacteristics of
the final material.

(Smalimodification of the direction can cau$eige
differencein the finalresult)

Theproblem is
HighlyNon Linear
High-Dimensional
Difficultto optimize
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Motivation

Uncertaintyis inevitable in engineering desigptimization

Uncertainty can degradine global performancef an
optimized design solution

Uncertainty can change feasibility of the selected solution

Uncertainty propagates wheseveraldisciplines are
coupled and the propagation of uncertainty has to be
accounted

It is important toidentify uncertainty and howo best
allocate investments toeduce uncertainty undea limited
budget.
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Probability that a failure is attained
as a result of input variability

Failure probability and reliability
index are used as measure of the
reliability of outputs

A reliable design has a low failure
probability with respect to pre
defined failure constraints

Optimus®
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Motivation

Current reliability approaches have inherent limitations:

FORM/SORM: multiple failure criteria and/or closed LSF cannot be
handled properly

Monte Carlo simulation/subset simulation: number of samples, even
for low probabilities, can still be very prohibitive to compute

Challenges: either too approximate, or too expensive
A trade off exists, that can be tuned between the two extremes
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Motivation: composite materials

Composites typically use energetic criteria for failure estimation
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