The UberCloud

Simulations and High Performance Technical Computing in the Cloud

The UberCloud

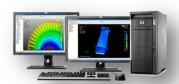
Simulations and High Performance Technical Computing in the Cloud

Product innovation and scientific insight require computing

Engineers & scientists computing tools: workstations, servers, clouds

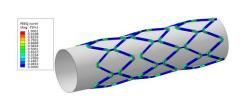
3 options to use technical compute power

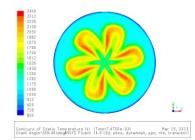
Benefits of HPC in the Cloud

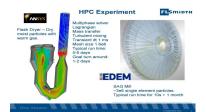

Continue using your workstation for your daily design, and use Cloud resources with **additional** benefits:

- + An HPC system at your finger tip, on demand
- + Pay per use (no CAPital EXpenditure)
- + Scaling resources up and down (business flexibility)
- **+ Low risk** by working with multiple cloud providers.

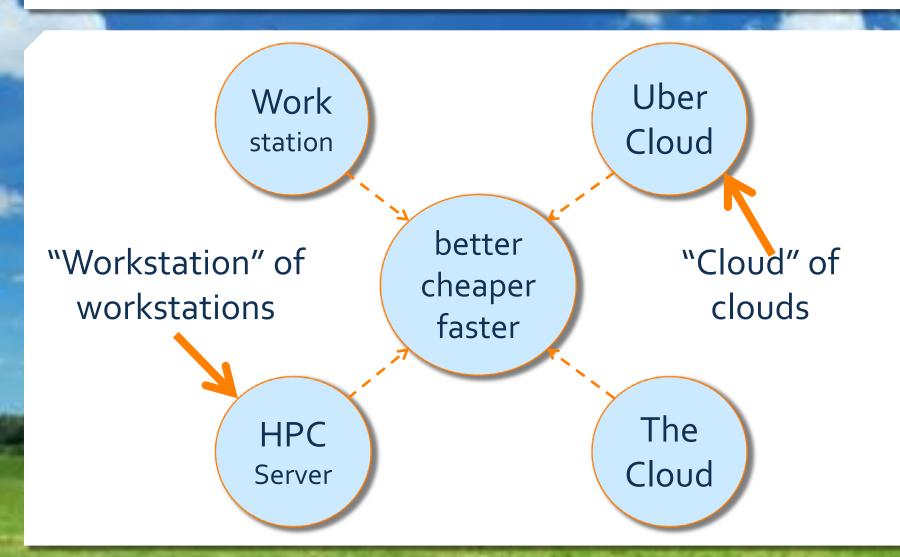
The challenges

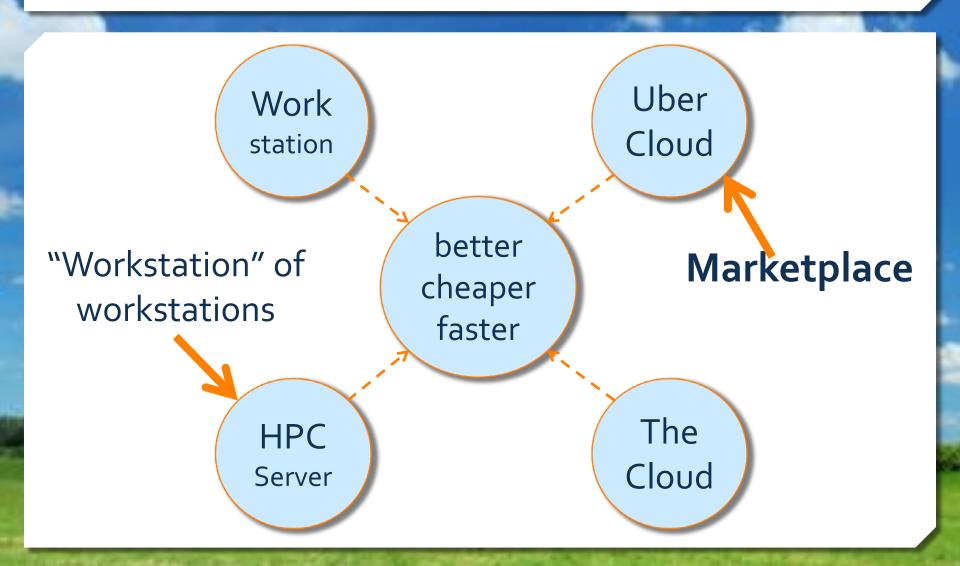

+ Workstation: slow, limited capacity




- **+ HPC server:** expensive (TCO!), complex
- + HPC in the Cloud: security, licensing, data transfer, expertise, and ...

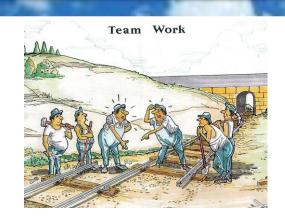
+ ... a very crowded cloud services market, difficult to find **your** ideal service




The four dimensions of HPC

The four dimensions of HPC

It all started July 2012 with the free voluntary UberCloud **Experiments**


HPC as a Service, on demand, in a team experiment

For **SMEs** and their engineering applications to explore the end-to-end **process** of using **remote** computing resources, as a **service**, on demand, at your finger tip, and **learning how to resolve the roadblocks**.

- + End-User registers
- + Software Vendor joins
- + We select a **Team Expert**
- + Matching a Resource Provider

- + Assigning an UberCloud mentor
- + Now, the team is **ready to go**
- + Finally, writing the Case Study

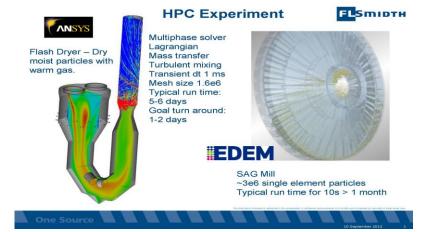
152 UberCloud Experiments so far42 case studies published in Compendium I & II

The UberCloud HPC Experiments

Started July 2012, 3000 participants, 72 countries

Example: Bull extreme factory in the UberCloud:

- + Team 5: 2-phase Flow Simulation of a Separation Column
- + Team 8: Flash Dryer with Hot Gas to Evaporate Water from a Solid
- + Team 32: 2-phase flow simulation of a separation columns
- + Team 52: Simulations of Blow-off in Combustion Systems

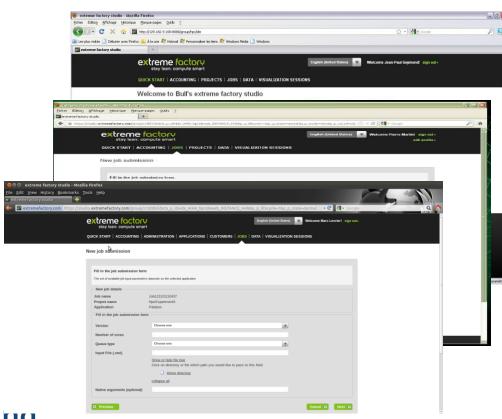

- + Team 89: Simulations of Enzyme-Substrate reactions
- + Team 120: Simulation of water flow around self-propelled ship

Team 8: Flash dryer with hot gas to evaporate water from a solid

Ingo Seipp and Team science+computing

End-User

CFX


extreme factory stay lean: compute smart

Team 8:

End-to-end workflow in a web browser

- + Input data upload
- Software license check / update
- + Job submission
- + Job control
- + Job & solver log check
- + 3D remote post-processing

Palabos job submission form

Team 8: Positive results, no major roadblock

"Primary goal running the job in 1-2 days was met."

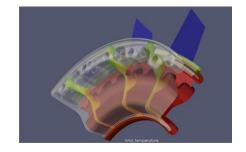
"Due to the size of output data and transfer speed limits, a **remote visualization** solution is required."

"HPC applications in the cloud require experience and a team to deploy and tune apps and support users. This is one reason HPC Software as a Service is **not 100% ready yet** for total cloud automation."

This was in 2012. Now in 2014, this has changed!

TEAM 118: Coupling in-house FE code with ANSYS Fluent CFD in the Cloud

- + End user Marius Swoboda, Hubert Dengg, Rolls-Royce Deutschland
- + Software Provider: Wim Slagter, René Kapa, ANSYS
- + Cloud Provider: Matthias Reyer, CPU 24/7
- + Team Expert: Alexander Heine, CPU 24/7



Team 118: Temperature predictions for jet engine components

- + Jet engine high pressure turbine assembly
- + Transient aero-thermal analysis
- + FEA/CFD coupling achieved through iterative loop with exchange of information between the FEA and CFD at each time step,
- + Ensuring consistency of temperature & heat flux on the coupled interfaces between metal and fluid domains

Temperature contours for a Jet Engine Component

Team 118: The aim of this experiment

- + Coupling ANSYS Fluent with in-house FE code.
- + Done by extracting **heat flux profiles** from Fluent model and applying FE model. FE model provides metal temperatures in the solid domain.
- + Conjugate heat transfer needs al lot of computing, especially when 3D-CFD-models with more than 10 mio cells are required.
- + Using cloud resources is beneficial regarding computing time.

Contours of heat flux

WARNING

- + HPC is complex; at times it requires multiple experts
- + Reaching out to industry end-users
- + No standards: access and usage of hw & sw providers are different, some are complex
- **+ Time delays:** vacation, conferences, and everybody has a day job (busy!)
- + Barriers: Complexity, data transfer, security, IP, software licenses, performance, interoperability...

AND: we learned a lot

Problem: today's crowded and ineffective cloud 'market'

Supply

Cloud providers

Consultants

Trainers

Demand

Engineers
Scientists
Data analysts
Experts

Solution: The UberCloud Marketplace

UberCloud Marketplace \

for 20+ million engineers and scientists

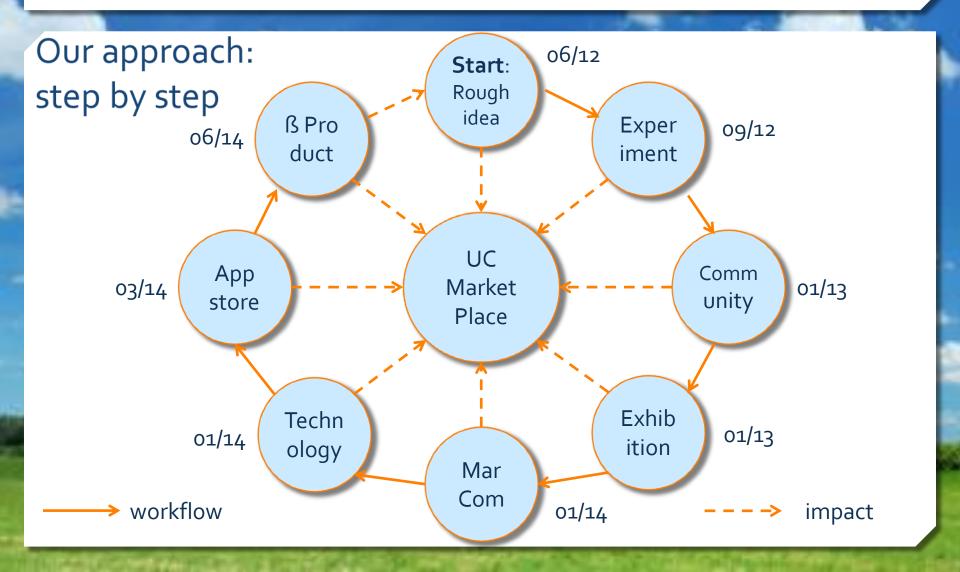
Supply

and their service providers

Cloud providers to discover, try, buy, and self

Scientists Computing time, storage, software and expertise Consultants on demand

Trainers


Demand

Engineers

Experts

Building a marketplace demands building an ecosystem

Announcement at

HOME | LOGOUT BURAK YENIER | MY PROFILE | HELP \\ ■1

UberCloud Marketplace

Add To Cart »

Next Steps: Reducing / Removing Cloud Challenges

Challenge *)	Addressed today	With UberCloud **)
Portability	low	high
Security	medium	high
Software Licenses	low	medium
Data Transfer	low	medium
Compliance	low	medium
Standardization	low	high
Cost & ROI Transparency	low	high
Resource Availability	medium	high
Transparency of Market	low	high
Cloud Computing Expertise	low	medium

^{*)} Cloud challenges are addressed low, or medium, or high

^{**)} When UberCloud is fully developed two years from now

It's your turn now ©

- + <u>Download 2013 Compendium of case studies</u> <u>from HPCwire</u>
- + Download 2014 Compendium of case studies
- + Register at The Uber Cloud.com
- + Try the UberCloud Marketplace and you get
- **+** NOW

NOW

The UberCloud Community and Marketplace

Thank You!

Register free at

http://www.TheUberCloud.com